Chapter 10.1: UB-tree for Multidimensional Indexing

Chapter 6.1 Introduction

Note: all relational databases are multidimensional: a tuple in a relation with m attributes is considered as a point in m dimensional space.

Geographic Data: weather stations:

($\mathbf{X}, \mathbf{Y}, \mathbf{Z}$, time, temp, humidity, wind velocity, ...)

Fundamental Problem: how to partition multidimensional space for fast search, insertion, deletion?

UB-tree relies on 3 basic concepts:

area
address
region

Areas and Addresses

Definition: An area \boldsymbol{A} is a special subspace of the hypercube universe constructed as follows: partition the m -dim cube into 2^{m} subcubes of equal size and number them $\quad 1,2, \ldots, 2^{\mathrm{m}}$

1. at level 1 take the first a_{1} subcubes
2. at level 2 take the first a_{2} subcubes
of subcube $a_{1}+1$ of level 1
3. at level 3 take the first a_{3} subcubes
of subcube $a_{2}+1$ of level 2
and in general:
k . at level k take the first a_{k} subcubes of subcube $a_{k-1}+1$ of level $k-1$
etc.

Definition: The address of an area \boldsymbol{A} is the sequence of subcube numbers

$$
\mathrm{a}_{1} \cdot \mathrm{a}_{2} . \ldots \quad . \quad \mathrm{a}_{\mathrm{k}}=\quad \operatorname{alpha}(\mathrm{A})=\boldsymbol{\alpha}(\mathrm{A})
$$

according to the preceding definition.
Note: Lexicographic increase of address makes area bigger
Theorem: $\quad \alpha<\beta<\operatorname{Area}(\alpha) \subseteq \operatorname{Area}(\beta)$
Concept of region
Def. If $\alpha<\beta$, then
region $[\alpha: \beta]=\rho[\alpha: \beta]:=\operatorname{Area}(\beta)-\operatorname{Area}(\alpha)$

Note: for an increasing sequence of addresses

$$
\alpha_{1}<\alpha_{2}<\alpha_{3}<\ldots \quad<\alpha_{k}
$$

we define corresponding regions
$\rho_{1}:=\left(0: \alpha_{1}\right] \quad \rho_{2}:=\left(\alpha_{1}: \alpha_{2}\right] \ldots \quad \rho_{k}:=\left(\alpha_{k-1}: \alpha_{k}\right]$
which can also be represented as the increasing sequence:

$$
\alpha_{1} ; \alpha_{2} ; \alpha_{3} ; \ldots \quad ; \alpha_{k}
$$

(which will later be stored in a B-tree index)

Alternative definition: an area is the set of points on an initial interval of the space filling Z-curve

Examples: areas with addresses
$2 \quad 3.2 .1$
2.1.3.1.2

Idea 1: store data in region $\boldsymbol{\rho}_{\mathrm{j}}$ on a disk page $\mathbf{P}_{\mathbf{j}}$
Idea 2: store addresses

$$
\alpha_{1} ; \alpha_{2} ; \alpha_{3} ; \ldots \quad ; \alpha_{k}
$$

in a B-tree or B*-tree or Prefix B-tree
$\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{k}}$ are the leaves of the B-tree
Fundamental Question: How to split spatial region, if the leaf page of a B-tree must be split?

Points and Coordinates

$$
\text { point } \mathrm{p}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}}\right)
$$

At a certain resolution, p is a small square (pixel)
Def: Address $\boldsymbol{a l p h a}(\boldsymbol{p})=$ address ot that area, whose last point is p

Def: $\quad \operatorname{cart}(\alpha)=$ Cartesian coordinate of point p with address α

Lemma: \quad cart (alpha $(\mathrm{p}))=\mathrm{p}$
$\operatorname{cart}\left(\operatorname{alpha}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}}\right)\right)=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}}\right)$

