
 1

Chapter 1.6.1 File-System

Physical Disk Storage

 CPU

 Channel 1 ... Channel k

 Device 1 Device g1 Device 1 Device gk

Address of a disk block:

(Ki, Gj, Zk, Oe, Bm)

 block #
 surface #
 cylinder #
 device #
 channel #

i.e. interface PPS : physical peripheral storage with physical
blocks (P-Block)
Operations of PPS:

 2

„start channel programm“ in main frames
„call disk driver“ in WS and PC

Abstract peripheral disk store: APS

- Objects: Sets of logical blocks
 e.g. Drive, Minidisk, Segment
 often: | Block | ≠ | P-Block |

- Adressing: as uniformly as possible
 e.g. N x N

- Operations: read (Blockaddr, Bufferaddr)
 write (Blockaddr, Bufferaddr)

Motivation for APS:

 Segments are freely configurable
 Size of segment, | Block |
 change dynamically
 shadowing of defect P-Blocks
 simple addressing, management of free storage

File-Interface, File-System:

 3

- Objects: Files of Records

 rich structure of files and record
 e.g. sequential, random,

index- sequential via record-keys, ...

- Addressing: various methods, depending on file and
record type

- Operations: get, put, ...

 open, close, EOF, ...

Architecture of File-Systems:

 Editor DBS ? User Programs

-- File-SS

 file management as OS-process
 outside kernel

-- APS

 I/O-System with buffer-management,
 main-storage cache, ...

-- PPS
Tasks of the I/O-systems

 4

1. Creation and management of block-sets

2. Increase, decrease block-sets

3. Management of P-blocks (free storage)
 mapping: { blocks } { P-blocks }
 with | block | ≠ | P-block |
 replace (shadow) P-blocks
 address book, dictionary

4. Execution of read / write operation calls
 i.e. interpret parameters
 evaluate (search) dictionary
 start and manage PPs calls
 e.g. start I/O
 process interrupts

5. Buffer-Management: mainstore-cache

disk-caches of main frames in Extended Storage System
(ESS)
i.e. semiconductor storage with block-interface

Tasks of the file-system

1. create, delete files

 5

 various file types
 (large variety for mainframes)

2. manage file catalogues
 catalogue = special type of file
 embedding technique, like DB-Schema

3. Storage management for files
 mapping: { Records } { block areas }
 e.g. for B-Trees
 tree-node → block
 internal node-structure?

4. Access rights: manage and enforce
 UNIX: via catalogue
 MVS: via RACF

5. Reords: find, read, write

i.e. extract form blocks and insert into blocks (CPU
intensive!!)

Chapter 1.6.2 UNIX File-System

Abstract file system UNIX

 6

File-SS Directory-tree

 --- i-Node-SS:
 flat set of files
 N x N

APS Cache-SS

 -- Block-SS

PPS PPS

1. PPS-Interface:

| P-block | = 512 Bytes

disk format is configurable, tendency towards ≥ 4 KB
 diskread (P-block-Addr., Buffer-Addr.)
 diskwrite (P-block-Addr., Buffer-Addr.)

 7

Intermediate Consideration:
Performance and size of P-blocks

Transfer rate: 3 MB/s
average access time: 15 ms
pure transfer time for | P-block | = 512 B:

512 B/P-BI 512 B * s
 = ________ ≈ 0.2 ms/P-BI
 3 MB/s 3 .106 B * P-BI

pure transfer time for | P-block | = 4 KB ≈ 1.6 ms/P-BI

Effective performance with 512 B/P-BI:

 512 B 512 KB KB
___________ = __ = 33.7 ___ ≈ 1.1%
 15.2 ms 15.2 s s

Effective performance with 4 KB:

 4096 B 4 MB K
___________ = = 252.8 ___ ≈ 8.4%
 16.2 ms 16.2 s s

ΤEffective performance of disks grows nearly linearly

 with P-block size!!
(general formula?)

2. Block-SS:
 8

- Objects: logical devices with dev #
 ∼ block-sets
 | block | = 512 B

- Addressing: (dev #, block #)
 0, 1, 2, ...

- Operations: strategy for read and write
 with control-block for parameters:

R/W-Flag
Addr. of a Cache-Block in AS
Block-Addr.
Error-Flags
Done-Flag (for asynchronous read, write: interrupt
triggered?)

open
close for exchanging of devices
mount

3. Cache - SS

 9

- Objects and addressing: (dev #, block #)
 i.e. identical with Block-SS

- Operations:

READS : read synchronously
READA : read ahead, asychronously
 e.g. for Editor
WRITES : synchronous write, i.e. write immediately and

wait
WRITEA : asynchronous write, i.e. write immediately,

don`t wait
WRITED : write deferred, leave open time of physical

write, large
 potential for optimization
FLUSH Buffer :
 physical write through to disk of all pending
 WRITES, WRITEA, WRITED orders, which
 have not been completed yet.

 all physical operations with strategy

 most frequently: READS; WRITED

Example for optimization:

 10

Reduction of physical transports between disk and AS and of
arm positioning

WRITED (3,17)
READS (3,17)
WRITED (3,17)
WRITEA (3,17)
WRITED (3,18)

Other Caches:

HW-Cache: CPU Cache AS

 on Chip

 today > 95% of all storage accesses from Cache

DB-Cache: see later, chapter 5.5

Disk-Cache: channel disk-cache
 :

 :

4. i-Node SS:

 11

i ∼ file # ∼ Index of i-Node entry in special table = i-List (flat
catalogue)

i - Node ∼ file descriptor with fixed format:

User-id actual size
group-id 10 x block # creations time
10 protection Bits last modification

file – Type file-type

 1 10 ... 2

 (dev #, block #)
Block
with
128 Addr.

 11 ... 138

 139 ... 1282 ...
 blocks
 1283
 leaves

 12

 2 113 674 blocks
 maximal file size ∼ 1 GB
 1.082.201.088 Bytes

today by far too small e.g. for OMNIS and in general for
DB applications

 block assignment to files dynamically, i. e. only little
physical clustering or random accesses even for
sequential reading of a file (compensation by caching
techniques)

- Objects: files of D-blocks
 D-block = leaf of i-Node tree

- Addressing: (i, b #)
 Dictionary: {(i, b#) → {(dev #, block #)}
 evaluation via i-Node tree

- Location of i-List: fixed, known area on Device

- Operations:

 i-Nodes: create, delete, read, write
 i-Node list: manage tree storage!
 Block-assignment to files dynamic, implicite
 Evaluation of dictionary:

 e.g. i-read (7, 19) → READS (2,326)
 (i, b #) → (dev #, block #)

5. Directory and File-SS

 13

Directory-tree above flat i-Node files. Directory is special file
with references
(pointers) to sons, father, itself.
3 variants of files:
 - directories
 - „normal“ files
 - „device files“ (devices are treated like files)

Directory Tree

Internal nodes are directories
Leaves are normal files or Devices

 i-List
 usr1 usr2 ... sys

 papers D programs

 ...
 TODS A B C

 14

Path names: /usr1/papers/TODS
Current directory: e.g. /usr1
Identification of files:

- complete path names: /usr1/ papers/TODS
- rel. to current directory: papers/TODS

 without / in front

Directory Structure: only references to i-Nodes, Info about
file in i-Node:

• i1 {for usr1 itself}

• • i2 {for father-node}
papers i3

D i4
programs i5

content of usr1 this directory file „user 1“ has
 itself i-Node with # i1

similar directories for
/, usr2, sys, papers, programs

Note: i-Node tree is optimized for directories?

 15

Sequence of Operations at Cache-SS
for /usr1/D

 READS (1,1) {read block from i-List with i-Node # 1 for
 /-directory, location is known}
 extract 1-node

 READS {search D-blocks of /-directory for (usr1, j)}
 READA

 with Index j compute Block # J of that block of the i-
List, which contains i-Node j for directory usr1.

 READS (1, J)
 extract i-Node with # j for usr1

 READS {search D-blocks of usr1-directory for
 READA entry (D, k)}

 with Index k compute Block K, which contains i-Note
k for File D

 READS (1, K)
 extract i-Node with # k for D
 {up to here opening procedure for file D}

 READS ... {read leaves of D, e.g. sequentially}

General Access Pattern:
 16

for directories: 1. fetch i-Node (with direct access to i-list)
 2. search leaves of directory file for desired

entry

for normal files: 1. fetch i-Node
 2. process leaves of i-Node tree

 accesses to blocks of i-list are very frequent, caching!
 i-Node itself is root of an access structure tree, needed
very frequently,

 where should it be stored?
 - Cache
 - file-management
 - address space of the process who manages the file

 17

Operations:

for dir files: <name>.dir
 MKDIR
 RMDIR
 CHDIR
 LS

for normal files:
 CREATE
 UNLINK update of the corresponding directories
 LINK
 OPEN fetch i-node
 CLOSE
 READ sequentially n bytes from file position,
 WRITE position file show Info in i-list entry
 SEEK
 STAT

 18

Access Control in UNIX:

- no passwords on file level, only via user-id and user group
- every file has owner
- 10 Protection Bits
 9 are read/write/execute for owner/group/all others
 1 bit for privileged programs (i.e. special rights during

access to file,
 only indirectly via authorized program)

Operations:

CHMOD: change access rights
 (only for owner)

CHOWN: change owner

Note: DBS needs more refined access control, e.g.
single attributes

 views, etc.

