Chapter 1.6.1 File-System

Physical Disk Storage

Channel 4

CPU

Channel |

Address of a disk block:

(Kis st Zk’ Oe; Bm)

i.e. interface PPS : physical peripheral storage with physical

blocks (P-Block)
Operations of PPS:

block #
surface #
cylinder #
device #
channel #

,start channel programm®* in main frames
,call disk driver* in WS and PC

Abstract peripheral disk store: APS

- Objects: Sets of logical blocks
e.g. Drive, Minidisk, Segment
often: | Block | # | P-Block |

- Adressing: as uniformly as possible
eg. Nx N

- Operations: read (Blockaddr, Bufferaddr)
write (Blockaddr, Bufferaddr)

Motivation for APS:

Segments are freely configurable
Size of segment, | Block |
change dynamically
shadowing of defect P-Blocks
simple addressing, management of free storage

File-Interface, File-System:

- Objects: Files of Records
rich structure of files and record
e.g. sequential, random,
index- sequential via record-keys, ...

- Addressing: various methods, depending on file and
record type

- Operations: get, put, ...
open, close, EOF, ...

Architecture of File-Systems:

Editor DBS ? User Programs

File-SS

file management as OS-process
outside kernel

APS

I/O-System with buffer-management,
main-storage cache, ...

PPS

Tasks of the 1/O-systems

1. Creation and management of block-sets
2. Increase, decrease block-sets

3. Management of P-blocks (free storage)
mapping: { blocks } — { P-blocks }
with | block | # | P-block |
replace (shadow) P-blocks
address book, dictionary

4. Execution of read / write operation calls
i.e. interpret parameters
evaluate (search) dictionary
start and manage PPs calls
e.g. start /0
process interrupts

5. Buffer-Management: mainstore-cache

disk-caches of main frames in Extended Storage System

(ESS)
i.e. semiconductor storage with block-interface

Tasks of the file-system

1. create, delete files

various file types
(large variety for mainframes)

2. manage file catalogues
catalogue = special type of file
embedding technique, like DB-Schema

3. Storage management for files
mapping: { Records } —— { block areas }
e.g. for B-Trees
tree-node — block
internal node-structure?

4. Access rights: manage and enforce
UNIX: via catalogue

MVS: via RACF

5. Reords: find, read, write

i.e. extract form blocks and insert into blocks (CPU
intensive!!)

Chapter 1.6.2 UNIX File-System

Abstract file system UNIX

File-SS Directory-tree
i-Node-SS:
flat set of files
N xN
APS Cache-SS
Block-SS
PPS PPS

1. PPS-Interface:
| P-block | = 512 Bytes
disk format is configurable, tendency towards > 4 KB

diskread (P-block-Addr., Buffer-Addr.)
diskwrite (P-block-Addr., Buffer-Addr.)

Intermediate Consideration:
Performance and size of P-blocks

Transfer rate: 3 MB/s
average access time: 15 ms
pure transfer time for | P-block | = 512 B:

512 B/P-BI 512 B s
— = ~ 0.2 ms/P-Bl
3 MB/s 3 10°B - P-BI

pure transfer time for | P-block | = 4 KB = 1.6 ms/P-BlI

Effective performance with 512 B/P-BI:

512 B 512 KB KB
= = 337 — = 11%
15.2 ms 15.2s S

Effective performance with 4 KB:

4096 B 4 MB K
— = = 2528 — = 8.4%
16.2 ms 16.2 s S

Effective performance of disks grows nearly linearly
with P-block size!!
(general formula?)

2. Block-SS:

- Objects: logical devices with dev #
~ block-sets
| block | =512 B

- Addressing: (dev #, block #)
0,1,2,..

- Operations: strategy for read and write
with control-block for parameters:

R/W-Flag

Addr. of a Cache-Block in AS
Block-Addr.

Error-Flags

Done-Flag (for asynchronous read, write: interrupt
triggered?)

open
close for exchanging of devices
mount

3. Cache - SS

- Objects and addressing: (dev #, block #)
i.e. identical with Block-SS

- Operations:
READS : read synchronously

READA : read ahead, asychronously
e.g. for Editor

WRITES : synchronous write, i.e. write immediately and
wait

WRITEA : asynchronous write, i.e. write immediately,
don’t wait

WRITED : write deferred, leave open time of physical
write, large

potential for optimization

FLUSH Buffer :
physical write through to disk of all pending
WRITES, WRITEA, WRITED orders, which
have not been completed yet.

all physical operations with strategy
most frequently: READS; WRITED

Example for optimization:

Reduction of physical transports between disk and AS and of
arm positioning

WRITED (3,17)
READS (3,17)
WRITED (3,17)
WRITEA (3,17)
WRITED (3,18)
Other Caches:
HW-Cache: |CPU Cache AS

on Chip
today > 95% of all storage accesses from Cache

DB-Cache: see later, chapter 5.5

Disk-Cache: |channel disk-cache

4. i-Node SS:

10

i~file# ~ Index ofi-Node entry in special table = i-List (flat
catalogue) 2 113 674 blocks

i- Node ~ file descriptor with fixed format: maximal file size ~ 1 GB
1.082.201.088 Bytes

. T today by far too small e.g. for OMNIS and in general for
group-id 10 x block # | creations time DB applications

last modification
file-type
block assignment to files dynamically, i. e. only little
B physical clustering or random accesses even for
sequential reading of a file (compensation by caching
\ techniques)
(dev #, block #)

- Objects: files of D-blocks

with
128 AdV \ / \ / \ D-block = leaf of i-Node tree
- Addressing: (i, b #)
11 | ... |138

Dictionary: {(i, b#) — {(dev #, block #)}

evaluation via i-Node tree
1282 DX . XX

blocks - Location of i-List: fixed, known area on Device
1283

leaves - Operations:
i-Nodes: create, delete, read, write
i-Node list: manage tree storage!
Block-assignment to files dynamic, implicite
Evaluation of dictionary:
e.g. i-read (7, 19) - READS (2,326)
(i, b #) — (dev #, block #)
5. Directory and File-SS

User-id actual size

10 protection Bits

file — Type

Block

Path names: /usr1/papers/TODS

Directory-tree above flat i-Node files. Directory is special file Current directory: e.g. /usr1
with references

(pointers) to sons, father, itself.
3 variants of files:

Identification of files:
- complete path names: /usr1/ papers/TODS
- rel. to current directory: papers/TODS

- directories without / in front
- ,normal* files
- ,device files" (devices are treated like files) Directory Structure: only references to i-Nodes, Info about
file in i-Node:
Directory Tree ol iy {for usr1 itself}
oo i {for father-node}
Internal nodes are directories pagers !3
, . I4
Leaves are normal files or Devices ,
programs is

/'\ i-List . . : «
content of usr1 this directory file ,user 1“ has

usr1 usr2 ... Sys
T itself i-Node with # i
similar directories for
;ﬁ D 7& — /, usr2, sys, papers, programs

T0DS A B G / Note: i-Node tree is optimized for directories”

13 14

Sequence of Operations at Cache-SS
for /usr1/D

READS (1,1) {read block from i-List with i-Node # 1 for
/-directory, location is known}
extract 1-node

READS {search D-blocks of /-directory for (usr1, j)}

READA

with Index j compute Block # J of that block of the i-
List, which contains i-Node j for directory usr1.

READS (1, J)
extract i-Node with # j for usr1

[READS {search D-blocks of usr1-directory for
READA entry (D, k)}
with Index k compute Block K, which contains i-Note
k for File D
READS (1, K)

extract i-Node with # k for D
{up to here opening procedure for file D}

READS ... {read leaves of D, e.g. sequentially}

General Access Pattern:

for directories: 1. fetch i-Node (with direct access to i-list)

2. search leaves of directory file for desired
entry

for normal files: 1. fetch i-Node
2. process leaves of i-Node tree

accesses to blocks of i-list are very frequent, caching!

i-Node itself is root of an access structure tree, needed
very frequently,

where should it be stored?

- Cache

- file-management

- address space of the process who manages the file

16

Operations:

for dir files: <name>.dir

MKDIR
RMDIR
CHDIR
LS

for normal files:

CREATE
UNLINK
LINK
OPEN
CLOSE
READ
WRITE
SEEK
STAT

update of the corresponding directories

fetch i-node

sequentially n bytes from file position,
position file show Info in i-list entry

Access Control in UNIX:

- no passwords on file level, only via user-id and user group
- every file has owner
- 10 Protection Bits

9 are read/write/execute for owner/group/all others

1 bit for privileged programs (i.e. special rights during
access to file,

only indirectly via authorized program)

Operations:

CHMOD: change access rights
(only for owner)

CHOWN: change owner

Note: DBS needs more refined access control, e.g.
single attributes

views, etc.

18

