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Abstract cial joins that exploit bitmap join indices, new join meth-

. ods [HWM98, CKK98], or multi-query optimization for
We propose a new class of algorithms that can be used to speeg iiqinn support to name just a few. In addition, a whole
up the execution 0f_rr_1u|t|-way join queries or of queries that i hew industry, data warehouses, has appeared with products
VOlve.One or more joins and & group-by.  These new e.ValuaF'qrfhat materialize (i.e., pre-compute) query results and cache
techniques allow to perform several hash-based operations (joify, o results of queries. Furthermore, the TPC-D bench-
and grouping) in one pass without repartitioning intermediate re- mark [TPC95] has been proposed in ’order to evaluate the

sults. These techniques work particularly well for joining hierar- ot mance ‘of a database product for decision support
chical structures, e.g., for evaluating functional join chains along queries

key/foreign-key relationships. The idea is to generalize the con-

cept of hash teams as proposed by Graefe et.al [GBC98] by indi- In this work, we present a new CI:’:_ISS of algo.”.thms that
L . . o can be used to speed up the execution of decision support
rectly partitioning the input data. Indirect partitioning means to

partition the input data on an attribute that is not directly needed queries that involve one or more joins and a group-by op-

for the next hash-based operation, and it involves the Construc?ratlon' The idea is to partition the input data and, then,

tion of bitmaps to approximate the partitioning for the attribute carry Ou.t . JOIr.] and group-by operations in o.ne pas;. To
make this possible, we propose to construct bitmaps in the

that is needed in the next hash-based operation. Our performance _ ..~ . . .
. . -partitioning phase of a table and use these bitmaps in the
experiments show that such generalized hash teams perform sig-_ ...~ .
o ; . artitioning phase of other tables. The advantage of our
nificantly better than conventional strategies for many commo

classes of decision support queries approach is that a_great de_al of disk 10 can be sav_ed_, if
' the data base and intermediate query results do not fit into
) the available main memory: only one partitioning step per
1 Introduction table is required, rather than partitioning the inputs of ev-
Y join and group-by operation individually, as done by
fs?nventional guery execution engines today. Due to the

database applications. Managers of large businesses, 0L of bitmans. however. our aporoach miaht suffer from
example, want to study the developmensalesfor certain ps, hov , our app 9 .
so-calledfalse dropsgn the partitioning phase and result in

productsby region and they expect the database system to . ; . .
return the relevant information within seconds or at mostOVerall mqre'ased disk 10 and CPU costin certain cases. A
few minutes query optimizer should, therefore, enumerate query evalu-

- . . : ation plans based on our new approach in addition to tra-
Decision support typically involves the execution of

complex queries with join and group-by operations. Tod|t|onal query evaluation plans, and we will give formulae

support these kinds of queries, database vendors have sitghéag gﬁ?:;plﬁgzghby an optimizer in order to decide when to

nificantly extended their query processors and researchers Our approach can be seen as a generalization of hash
have Jugt recently developed a large var_lety of new quer cams, as proposed in [Gra94, GBC98]. Our technique
processing techniques; e.g., the use of bitmap indices, Spa_dopts the main idea of hash teams to partition base data
*This work was partially supported by the German National ResearctPNCe and carry out joins in one pass afterwards. Hash
Council DFG Ke 401/7-1 teams, however, can only be applied if all the joins within a
Permission to copy without fee all or part of this material is granted pro- team are carried out using the same join/group-by columns.

vided that the copies are not made or distributed for direct commercialOur approach, on the other hand, can be applied to any

advantage, the VLDB copyright notice and the title of the publication andkind of (equi) join and it works best for joining hierar-
its date appear, and notice is given that copying is by permission of the '

Very Large Data Base Endowment. To copy otherwise, or to republishchical structures, e.g., for ?Valua}t'ng functional join chains
requires a fee and/or special permission from the Endowment. along key/foreign-key relationships. We, therefore, refer to

Proceedings of the 25th VLDB Conference, our approach ageneralized hash teams
Edinburgh, Scotland, 1999. The remainder of this paper is organized as follows:

Decision support is emerging as one of the most importa




In Section 2 we introduce the use of generalized hash

teams by way of a simple binary join followed by a group- Aggcity
ing/aggregation. Section 3 provides more details on imple- |
menting generalized hash teams. In Section 4 the appli- PNty Aggcity

cation of generalized hash teams for multi-way joins with | |
or without a subsequent grouping is described. In Sec- X ou X
tion 5 the number of false drops resulting from the indirect, o N #

bitmap-based partitioning is analyzed. In Section 6 a few . pin . /in.q \t

representative decision support queries are benchmarked, " ¢# o# PtNity maps™ PN Bitmaps

Section 7 compares our work to other related proposals ! ! | |
Customer Order Customer Order

and Section 8 concludes this paper with a summary.
Figure 1: Traditional Plan Figure 2: Generalized Hash Team

2 Binary Joins with Aggregation B

) ] ) ) used to partition th®rder table so thaOrder tuples and
In this section, we will show how generalized hash teamsnatchingCustomertuples can be found in corresponding
work for queries that involve one join and one group-by op-order andCustomerpartitions. That is, th®©rder table is
eration. We will, furthermore, present a simplified variant, yartitionedindirectly using the bitmaps.
called partition nested loops As a running example, we 1 make this clearer, let us look at Figure 3 which illus-
will use the following query which asks for the tot#lue 5165 the whole process in more detail. The figure shows

of all Ordersgrouped by the&€ustomer City a small example extension of ti@ustomertable and how
Query 1 selectc.City, sum(o.Value) this Customertable is partitioned byCity into three par-
from Customer c, Order o titions: the first partition contains alLustomerdocated
wherec.C# = 0.C# in PA and M, the second partition contains Glistomers

group by c.City; located in B and HH, and the third partition contains all

. Customerdocated in NYC and LA. Just as in a traditional

2.1 Generalized Hash Teams (grace or hybrid) hash join, the goal is to generate partitions
The traditional (state-of-the-art) plan to execute our examthat fit into main memory, and database statistics would be
ple query is shown in Figure 1. This plan uses hashingised for this purpose. Corresponding to every partition,
in order to execute the join and the group-by operationthere is one bitmap that keeps track of t#s stored in
This plan would first partition (abbreviatgdn in the fig-  the partition; in this small example, there are three bitmaps
ures) both theCustomerand theOrder tables byC'# such  of length ten each. If £ustomertuple is inserted into a
that either all theCustomeror all the Order partitions fit ~ partition, the 1 + C#mod 10)'th bit of the corresponding
in memory; that is, this plan would carry out a (grace orbitmap is set. So, the fourth and sixth bit of the first bitmap
hybrid) hash join between these two tables [Sha86]. Afteare set because the first partition contalustomertuples
that, the traditional plan would use hashing (possibly withwith C#=15, 13, 25, and 23. Likewise, the first, third, sev-
early aggregation [Lar97]) to group the results of the joinenth, and tenth bit are set in the second bitmap.
by City. If there are mor€itiesthan fit into main memory, The next step is to partition th®@rder table using the
this group-by operation would, again, involve partitioning bitmaps. To see how, let us look at the fiBtder tu-
such that every partition can be aggregated in memory. Iple which refers toCustomer4. This Order is placed
all, there are three partitioning steps in this traditional planjnto the third Order partition because the bit at position
incurring 10 costs to write and read t@aistometable, the 14 (C# mod10) = 5 of the third bitmap is set. Likewise,
Order table, and the result of the join. As an alternative,the secon@rderwhich refers taCustomen is placed into
sorting, rather tharhashing can be used for the join and/or the second partition, and the thi@rder which refers to
the group by. In many cases, sorting has higher (CPU) costustomer25 is placed into the first partition. Following
than hashing; in any case, however, a traditional plan baseithis approach, alDrderswhich refer toCustomersstored
on sorting would also involve 10 costs to write and read thein the firstCustomerpartition are placed into the fir€r-
Customettable, theOrder table, and the result of the join.  der partition, and the equivalent holds fGrdersreferring

Figure 2 shows a plan that makes use of generalizetb Customerf the second and thir@ustomerpartitions.
hash teams in order to execute our example query. Likdhus, the query result can be computed by joining in mem-
the traditional plan shown in Figure 1, this plan is basedory the firstOrder partition with the firstCustomerparti-
on hashing to execute the join and the group-by operatiortion, thereby immediately carrying out the aggregation in
The trick, however, is that th@ustometable is partitioned memory, and then doing the same procedure with the sec-
by City, rather than byC#, so that the result of the join ond and thirdOrder andCustomeipartitions.
is partitioned byCity as well and the group-by operation It is important to notice that in certain cas&xder tu-
does not require an additional partitioning step. To makeples must be placed into two or even m@neler partitions.
this work, this plan generates bitmaps while partitioningln Figure 3, for instanceQrder 10 (highlighted by bold
the Customeitable. These bitmaps indicate in which parti- face) is placed into the first and thi@rder partitions be-
tion everyCustomettuple is inserted and these bitmaps arecause thirder refers toCustomer3 and the fourth bit of
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Figure 3: Example Execution of a Generalized Hash Team

the first and third bitmaps are set. We refer to the accidentdkams in other cases. One example, in which generalized
placement oDrder 10 in the firstOrder partition as dalse ~ hash teams are not appropriate, according to this criterion,
drop. False drops do not jeopardize the correctness of thevould be a query in which the key of the group-by opera-
overall approach for regular joins because they are filteretion involves a column of th®rdertable, e.g.OrderDate
out in the join phask but false drops do impact the per-  To summarize, generalized hash teams save disk 10
formance: the more false drops, the higher the 10 cost t@osts for partitioning intermediate query results if these in-
partition and re-read th@rders The number of false drops termediate results do not fit into the available main mem-
depends on the length of the bitmaps, and we will give for-ory. On the negative side, generalized hash teams require
mulae that can be used in a cost model of a query optiadditional main memory for the bitmaps in the partitioning
mizer in Section 5. Furthermor®rder duplicates occur if phase, they might involve additional disk 10 due to false
Customertuples with the sam€# are placed into differ-  drops, and they involve additional CPU costs to construct
entCustomerpartitions. Such a situation does not arise inand use the bitmaps. Also, the application of generalized
our example query becau&i is the key of theCustomer  hash teams should be limited to situations in which a func-
table. In general, such situations cannot arise if there is @onal dependency can be inferred from the join attributes
functional dependency between the join attribute (C#),  to the partitioning attributes. The optimizer of a database
and the partitioning attribute (i.eGity). In the absence of system should, therefore, be extended to enumerate gen-
such a functional dependendrders must be duplicated eralized hash team plans (where applicable) in addition to
in order to find their join partners in the differe@tistomer  traditional query plans.
partitions. In the remainder of this paper, we will assume
that such a functional _dependency exi;t; or that thgre is 8 5 partition Nested Loop Joins
least a strong correlation between the join and partitioning
attributes, and we recommend not to use generalized hasie now turn to another (novel) approach to execute our ex-
ample query; we refer to this approachpastition nested
10uter joins cannot always filter out false drops so that generalizedO0PS As with generalized hash teams, the key idea is to
hash teams are not directly applicable for all outer join queries. partition theCustomersy City before the join so that the




group-by operation does not require an additional partition3.1  Fine-Tuning the Indirect Partitioning Phase

ing step. In t_his approach, however, t_he_: join s carried O.UWe will use ourCustomerand Order example schema to
as a (blockwise hashed) nested loop join rather than USINYustrate this discussion. In the initial partitioning step

a graceor ) hash o, and h paron nested o0 C o, (sborovte s prtionsd ccord
J PP b 9 ing to theCity-attribute inton partitionsCy,...,C,. For

tealmz bteglauset'?.o b|tmatpz Teed'tc:nbevf/:opkstrucf:tid\.lv for this purpose some partitioning (hash) functiois needed
h detarl, partition nested 10op JoIns WOrk as follows 10Ty, o map<City-values into{1,...,n}. For each partition

our example query: C; a separate bitmap; of lengthb is maintained to ap-

1. partition theCustomertable by City into memory- Proximate the partitioning of the#values. These bitmaps
sized partitions (as for generalized hash teams or an9re initialized ta0. Eor sett|_ng and probing these bitmaps a
traditional hash join, iity were the join column) Second hash function, sayis needed that majis# values

into {1,...,b}. Now, consider a particular element C"

2. read theDrder table, project out the relevant columns itis inserted into thé-th partitionC; for i = p(c. City) and
(i_e_, C# andVa|ue, app|y0rder predicates (|f any), the k-th bit of B; is set wherek = h(CC#) So, the first
and write thereduced Ordetable to disk partitioning ofC is done as follows:

. .. . forall ¢ € C' do
3. read the firstCustomerpartition into memory and c

build a main-memory hash table on tf& column. ;:’}ffc%’;ig
Read thereduced Ordettable from disk and find the insertc into C;:
Ordersthat refer to theCustomersof the first parti- Bilk] :=1;
tion using the main-memoi@# hash table. Carry out od

the aggregation on the fly. (Details on this step can be

found in Section 3.2.) Having partitionedC' into C4,...,C, the n bitmaps

By, ..., B, approximate the partitioning function f@us-
4. repeat Step 3 for the second, third, fourth, and so off°meronC# Then, when partitioning therder table (ab-
Customerpartition. breviatedO) into O4, ..., O, any elemenb has to be in-

serted into partitiorO; if the h(o.C'#)-th bit of the i-th
Step 2 and Step 3 for the fir@ustomerpartition can be  bitmapB; is set. Due to false drops, it is possible that an
carried out together in order to save disk |0 costs. If no ofOrder o is placed into more than one partition. Thus, the
only marginal selections and projections are applicable opartitioning function forOrdersis as follows:
the Order table, then Step 2 can be omitted altogether and 541 » ¢ O do

Step 3 is carried out using the f@irder table. k := h(0.C#);
The tradeoffs between generalized hash teams and parti- forall i € {1,...,n} do
tion nested loop joins are fairly much the same as between if (B;[k] = 1) inserto into O;;
(grace and hybrid) hash joins and blockwise nested loop od
joins; see, e.g., [HR96, HCLS97]. If theustomertable od

Is large and must be partitioned into many partitions, par- e can tune this basic partitioning code in two ways:
tition nested loop joins are likely to perform poorly for re- First, we can identify thos®-objects for which the inner

reading the reduce@rder table many times. On the other |44, can be exited early. Second, we can increase the cache
hand, partition nested loop joins might perform better thar]ocality when accessing the bitmaps.

generalized hash teams if it can be expected that there are

many false drops. Also, of course, generalized hash teamsnort-Cuts in the Inner Partitioning Loop

require more main memory for the bitmaps in the parti- ) _ _ ) _
tioning phase. This additional main memory, however, isThere are two kinds of objects for which the inner parti-
really only needed in the partitioning phase which usuallytioning loop can be entirely bypassed or exited early:
requires much less main memory than the join phase (orthe 1 opjects Without Join PartnerFor thoseo € O that
group-by operation). So, the bitmaps can be stored in the definitely do not have a join partner ifi we need
extraspace which is allocated for the join but not needed not execute the inner loop at all. We will compute a
during the partitioning phase so that the overall main mem- separate bitmap, callagsed to identify those objects.
ory requirements of the join and the whole query do not  (Thjs kind of bitmap has also been proposed to speed
Increase. up traditional hash join operations [Bra84].)

2. Objects Without Collisions For thoseo € O that

are definitely not inserted into more than one parti-
In this section we will describe the indirect partitioning of tion (i.e., objects that won't drop into a false partition)
generalized hashed teams and the actual execution (joinand we can exit the inner loop as soon as they are inserted
grouping phase) of generalized hash teams and partition  into some partitior(’;. Again, we maintain a separate
nested-loop joins in more detail. bitmap,collision, for identifying these objects.

3 Implementation Details



Theused bitmap can easily be computed as follows: B=[ afl], 1], Bi[1], B2[l],...,By[l],...

ulk], c[k], Bi[k],B2lk],...,Bnl[k],--.

used := By | Ba| ... | By ulb], ¢[b], Builb], Ba[b],.-.,Bn[b] ]
where| denotes the componentwiseoperation. Thatis,u[k] is found at positiomB[(k — 1) x (n + 2) + 1],

clk] at B[(k — 1) = (n + 2) + 2], andB;[k] at B[(k — 1) *
(n+2)+2+1]. This way, the inner partitioning loop for the
Orderscan typically be carried out with a single processor
cache miss. The resulting organization is illustrated below:

The coll bitmap is set at positioft if two (or more)
bitmapsB; andB; are set at positioh, that is:

1 : ifthereexists #j € {1,...,n}

B
collk] := such thatB;[k] = B;k] = 1 L
0 : otherwise u
used coll B Bs B3 B,
In our system, both bitmaps are actually computed dur!
ing the partitioning of th€ustomettable. For our example (h—1)x(n+2)+1
the two auxiliary bitmaps are shown below:
k(|1 X 0 1 0 0
used coll B1 Bs Bs
1 0 0 1 0
0 0 0 0 0
1 0 0 1 0
1 1 1 0 1
1 0 0 0 1 bl ||| . |
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 0 0 0 0 bx(n+2) | |
1 0 0 1 0
The tuned partitioning pseudo code for Balersthen
looks as follows: 3.2 Teaming up the Hash Join and the Aggregation
forall 0 € O do The bitmap-based partitioning @ and C is the pre-
k := h(0.C#); requisite for teaming up the hash join and the group-
if (used[k] = 0) // definitely no join partner, proceed ing/aggregation operator such that the join operator can di-
with nexto € O rectly deliver its result tuples to the aggregation operator—

continue;
if (coll[k] = 0) // no collisions
forall : € {1,...,n} do
if (Bilk] = 1)

without having to repartition the data and write it to disk.
The straight-forward implementation requires two separate
hash tables: one hash table 6pC# for performing the

{ inserto into O join with the probe inpuiD; and a second hash table on
break; } // this was the one and only, proceedi-City for grouping/aggregating the join result. These
with nexto € O two operators have to be managed by a so-called “team
od manager’—as it was called in [GBC98]—such that they
else// collisions and false drops switch to the next partition synchronously.

for?f”(;e[k‘%l’_' '15’"} do We will now devise a further optimization which is

inserto into O: - based on combining the join and the aggregation opera-

od “ tor such that they share a common hash table on the build
od input C'. This is illustrated in Figure 4. Let us first con-
centrate on the build phase during which the hash table for
thei-th partition C; is constructed—shown in Figure 4(a).
While loading the partitiorC;, two hash tables are main-
We can also tune the storage structure of the bitmaps itained: one hash table callétl_Join on the join column
order to increase cache locality. We observe that the cod€;.C# and a second, temporary hash table, caleaHT,
for partitioning O accesses sequentially tlketh position  on the grouping columi@;.City. Both hash tables con-
of every bitmapused coll, By, ..., B,,. This observation tain pointers into thédashareain which the group entries
allows us to achieve higher cache locality. Let’s view theof the join/aggregation query are constructed. That is, the
n + 2 bitmaps of lengtth as a two-dimensional array with Hashareawill contain one entry for evergity value of
n + 2 columns and rows. To achieve higher cache locality partition C;. Let’s look at a particular build input tuple
we store this array in a single bitmap of length(n + ¢ € C; of the forme = [C# = 23, City = PA] and
2) = b by mapping the two-dimensional arrayrow major  trace how it is installed in the hash tables and the hash area.
sequencento a one-dimensional vector. Then, the only First, its C# value, 23, is inserted into thdT_Join hash
bitmap B contains the elements in the following order table; second, the aggregation tuple forQity value,PA,

Increasing Locality on Bitmaps



joins.

o . % 4 Multi-Way Joins
153 ' “ v Generalized hash teams and partition nested-loop joins can
o5 also be applied to multi-way joins. In the following, we
Hasharea will discuss this for generalized hash teams. (For partition
: \;—X‘%m\ nested-loop joins the tradeoffs are similar so we will omit
0 ciy agavalue JoinFlag  the discussion for brevity.) For illustration, let us look at
the following SQL query:
oA = Y [0]o0] Query 2 selectc.City, sum(l.Price)
VIS : from Customer c, Order o, Lineitem |
(A i where c.C# = 0.C#and |.O# = 0.0#
(a) Build Phase group by c.City;
0 Buffer (Order) This is a three-way (functional) join austomer Order,
lccec v | andLineitemfollowed by a grouping on th€ity attribute of
; Cf \Zlue Customer Generalized hash teams are applicable by par-
; titioning the Customertable byCity, thereby constructing
bitmaps in order to guide the partitioning of teder ta-
) Hasharea ble, as in the binary case described in Section 2. While
e § \;_XI%M partitioning theOrder table another set of bitmaps is con-
5| % Pa J0]0] city Aggrvalue JoinFlag  Structed and this set of bitmaps is then used to partition the
13| - e : Lineitemtable. After that, correspondir@@ustomer, Order
95 | L : andLineitempartitions can be joined and the result can be
cH I aggregated in one pass in memory. After partitioning, the
: join can be carried out in any particular order. Figure 5
shows two possible join orders for our example; the poly-
(b) Probe Phase gons surround a team of three operators. In the first plan,
Figure 4: Implementation of the Hash Tables the Customer-Ordejoin is carried out first; in the second

_ _ _ plan, theOrder-Lineitemjoin is carried out first. One of

is looked up via thamp.HT hash table. If this was the the arguments of the first join serves as the probe input of

first C; tuple with City=PA, a new group entry is installed the whole team. In our example qudrineitemis the best

in the Hashareaand the corresponding pointer is inserted choice as the probe input, because of its high cardinality,

into thetmp_HT'. Third, the pointer to this group entry of s that the second plan of Figure 5 would be better than the

the Hashareais installed in theHT_Join hash table. Af-  first plan.

ter inserting all tuples of the current build input partition |t should be noted that the memory requirements of gen-

Ci, the probe phase with partitio; of the probe input  eralized hash teams increase with the number of operations

starts—shown in Figure 4(b). Let's now trace @eder  that are teamed up. In our examplelifeitemis chosen

tuple[C# = 25, Value = 10]: TheHT Joinhash table is a5 probe input we need to keep information ofQitlers

inspected and the pointer to the group entry ifHlasharea  cystomersandCities of a partition in memory as part of

is traversed. Th¥alueis added to the\ggrvalueand the  executing the team. (Our special organization described in

JoinFlagis set to indicate that the group entry “has found” gection 3.2, however, does help to reduce the memory re-

a join partner (otherwise it would be discarded from the re-qyirements.) In the partitioning phase, memory for two sets

sult when flushing thélashareeof thei-th partition). After  of bitmaps are required: While partitioning t@eders the

the current probe partition is exhausted, the result tuples al€ustomerbitmaps must be probed and tBeder bitmaps

retrieved (“flushed”) from thédashareaand the computa-  myst be constructed; when partitioning thiaeitems only

tion of the nextCustomer/Ordepartitions starts. the Order bitmaps are relevant (th@ustomerbitmaps can
While this organization sounds complicated at firstpe discarded at that point).

glance, it is very easy to implement. The advantages are Thjs Query 2 is a “classical” case for employing gener-

that a great deal of main memory is saved because longjized hash teams because the join/grouping columns form

strings with, say,City names need only be stored once 3 hierarchy as can be derived from the functional depen-
in the Hasharearather than for eaclCustomerindividu-  gencies

ally, and that a great. dea] of CPU. costs is saved in many City — C# — O#

cases because hashing®yy is carried out once for every

Customerrather than once for every tuple of the result of This hierarchy of the relations is illustrated in Figure 6. In-
the Customerx Order. This organization can be used for direct partitioning works particularly well for such hierar-
generalized hash teams as well as for partition nested-looghical structures because, conceptually, ¢hass-relation



Pingiy——— Plnpy——— plngy Ptngigy,——— pingy——— pingy
| | | | | |
Customer Order  Lineitem Customer Order  Lineitem

(a) Customeror Order as Probe Input of the Team (b) Order or Lineitemas Probe Input

Figure 5: Alternative Query Evaluation Teams For The Three-Way Join

partitions (denoted aBartition 1, Partition 2, andParti-  joins are more favorable. In addition to these formulae, the
tion 3, and indicated by the shading) do not overlap. Thabptimizer must be extended by formulae that estimate the
is, as part of the partitioning, all matching tuples of all re- overall cost of generalized hash teams (based on our false
lations could be placed into a single cross-relation parti-drop analysis) and by enumeration rules that generate plans
tion, and we are able to “team up” the two joins and thewith generalized hash teams. These extensions, however,
group-by operators. This way, we save the cost of two reare straightforward and/or are virtually the same as the ex-
partitioning steps that would be carried out in a conven4ensions made in Microsoft’s latest SQL Server product to
tional hash-join/hash-aggregation plan (one for the seconthtegrate ordinary hash teams [GBC98].

join and one for the aggregation). Of course, in practice,

the partitions do overlap due to false drops resulting in ex5.1  Binary Joins and Aggregation

tra cost, but this extra cost is_ _usm_JaIIy much S”?a”ef thane begin and estimate the number of false drops for binary
the cost of the additional partitioning steps carried out by: .\« «/\ch as the Customer-Order query of Section 2. (We
a conventional plan. \We should stress that the generahz_%ﬁi” consider multi-way joins in the next subsection.) To

hash team technique does not require disjoint cross-relatiof), j:orate Figure 7 shows how false drops occur. The fig-

partitions for correctness—it has only performance rele- re shows that tha Customerand thell Customemare as-

vance. Therefore, it could be applied to non—h|erarch|c§ igned to different partitions but have the same hash value

cross-relation partitions. However, the performance gaif, setting the bitmaps. As a result, &fdersthat refer to
will decrease as more tuples need to be inserted into multlfhe A Customenill produce one false drop because they

ple partitions. will be (accidently) copied into the second partition. Like-
wise, all theOrdersthat refer to théll Customewill pro-
duce a false drop because they will accidently be copied
into the first partition. If there were anoth€ustomemwith

the same hash value, and stored in the third partition
(not shown), then all th®©rdersreferring to thea, B, or

this third Customerwould produce two false dropsOr-
derswhich refer to the® andJ Customerson the other
hand, do not produce any false drops: these@ustomers
have the same hash value, but they are stored in the same
Customerpartition.

Statistically, the number of false drops can be estimated
fairly easily; similar formulae have, e.g., been devised
in [Car75, HM97].

To simplify the discussion, we will assume that the join
is a functional join and that there is a referential integrity
5 False Drop Analysis ;:onstr'aint SO 'that ever@rder refe.rs to exactly_ on€us-

omerin the join. (These assumptions can easily be relaxed
In this section, we will devise formulae in order to esti- for cases in which there is e. g. a predicate that restricts the
mate the number of false drops that occur when executin@ustomergarticipating in the join.) Furthermore, we will
generalized hash teams. These formulae can be used dwsen to denote the number of partitionsfor the length
ing query optimization in order to decide whether general-of every bitmap¢ for the number ofCustomersando for
ized hash teams are beneficial to execute parts of a query dre number ofOrders Under these assumptions, @rder
whether traditional join techniques or partition nested-loopmust be placed into at least one partition, and it is falsely

Partition 1 Partition 2 Partition 3

Figure 6: Indirectly Partitioning a Hierarchical Structure
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h(A) = h(.) =14 (collision leading to false drop)
h(e) = h(O) = 5 (collision w/o false drop)

Figure 7: False Drops in Binary Joins

copied into one of the other — 1 partitions, if one of the Unfortunately, Formula (1) cannot be used in a practical
otherc — 1 Customerdo which theOrder does not refer query optimizer. It andb are large, which they usually are,

has set the corresponding bit in the bitmap of that partitioncomputing the result of this formula with reasonable accu-
Putting it differently, the probability of a false drop for an racy is prohibitively expensive. Also, computing the (stan-

Orderin a partition is: dard) approximation usingv for (1 — i)z is prohibitively
1\t expensive. We, therefore, propose to use the following very
1— <1 — > simple approximation in order to estimate the number of
nxb false drops in a query optimizer:
(Here, -1 is the probability that &Customersets the rel- c—1
evant bit;1 — -L; is the probability that &ustomerdoes 0% (n—1)* ——— 2

not set the relevant bil — —L-)°~* is the probability that
none of thee — 1 Customerssets the relevant bit; and fi- This formula simply estimates the probability that the rel-
nally, 1 — (1 — ﬁ)“l is the probability that at least one evant bit in a “critical” partition is set by one of the other

of thec — 1 Customersets the relevant bit.) c—1 Customersas%. The simplification consists in as-

In all, the number of false drops for &irdersconsider- ~ suming that no two customers set the same bit in a bitmap.
ing all of then — 1 “critical” partitions can be estimated as This formula is conservative: it can be shown thaf >
follows: 1 —(1— -L)="1. Thus, a query optimizer using this for-

-1 mula will overestimate the number of false drops and will
ox(n—1)x (1 _ (1 1 ) > (1)  usegeneralized hash teams cautiously. For Query 1 of Sec-
nxb tion 2, we measured how accurate this approximate formula
. is depending on the amount of memory available to execute

It should be note_d ';hat this formula (and the actual num-, query, and we show the results in Figure 8. (The amount
ber of false drops) is independent of skew betwoetters ¢ gy ailable main memory determingsandb; we present
and Customersthat is, if someCustomersgenerate more  yet4ils of our experimental environment in Section 6, the
Ordersthan others, this fact_ will (statistically) not affectthe y5tapase cardinalities are summarized in Table 1, Page 10.)
number of false drops. This formula does assume that th@e see that the estimates of the approximate formula are
hash function used to hash ti& spreads evenly; if not, qite precise compared to the actual number of false drops
the number of false drops will obviously be higher. The yq4qred while executing the query. Only for small mem-
formula also assumes that tiistomersare partitioned oy sj7es (and correspondingly short bitmaps, i.e., shall
evenly into partitions (this is the partitioning function ap- e approximate formula visibly overestimates the number
plied to theCity attribute). If the partitioning function is ¢ ta15e drops.
skewed, the number of false drogescreasesTo see why,
consider again Figure 7 in whicbrdersreferring to the’ ; ;
ande® Customers do not produce false drops because thes?r’é2 Multi-way Joins
two Customersare placed into the same partition. In the We now turn to multi-way join queries. Estimating the
extreme case in which aCustomersare placed into the number of false drops is complicated in this case, and we
sameCustomerpartition, no false drops at all occur. (This have not yet found a statistically precise formula. Even
extreme case, however, is obviously not desirable for otheif we did, such a formula would, again, probably be pro-
reasons.) hibitively expensive to compute. We, therefore, concen-



The second kind of false drop can be estimated as

actual(\‘miform) A
6 L approx <>

foxl (@)
(o]

wheref, is the estimated number @frder false drops, es-
timated using again Formula (2). In all, we approximate the
2t 1 number ofLineitemfalse drops as the sum of the number
L i of these two kinds of false drops. This is again a conserva-
23*@ _ tive approach that overestimates the number of false drops
o 2 3 4 s and makes the optimizer be overly cautious to use general-
Memory [MB] ized hash teams because this approach assumes that there is
Figure 8: False Drops for Query 1 no overlapbetween the two kinds of false drops. (Model-
100 ‘ ‘ ‘ ing the number of false drops precisely, this overlap would
act:if:(('m have to be subtracted from the estimated total number of
80 , approx - i false dI’OpS.)
B Again, we would like to note that the number of false
o\ O . drops is (statistically) independent of skew. The number
of false drops is also independent of the join order within
40 ¢ 1 the generalized hash team. As stated in Section 4, joins can
' freely be ordered within a team, but the partitioning order is
e S fixed and false drops only occur in the partitioning phase.
B s N The number of false drops, however, does depend on the
10 15 20 2 quality of the hash function used to set the bitmaps and on
Memory [MB] the partitioning function used to partition the first relation
Figure 9: False Drops for Query 2 (i.e.,Customeiin our examples).

. . . To measure the accuracy of our approximate formula for
trate on a very simple approximate formulathat can be iMynulti-way joins, we ran Query 2 from Section 4 and com-
plemented and evaluated by a query optimizer with veryyared the actual number of false drops with the estimated
little effort. We will, furthermore, concentrate on Query 2 ,umber of false drops. For these experiments, we used two
of Section 4, as an example, and note that our results cafjferent database instances: (&)iform with Orders re-
easily be generalized to other queries. o ferring to Customersusing a uniform distribution, and (b)

First of all we note that there a@rder andLineitem  skewedwith Orders referring to Customersaccording to
false drops when using generalized hash teams for ouf 8o-20 self-similar distribution as defined in [GSH].
three-way join example query. Ti@rder false drops can  Figure 9 shows the total number of false drops for each
be computed using exactly the same (approximate or exacgase. \We see that our approximations overestimates the
formulae described in the previous subsection. Second, Wgumper of false drops significantly in some cases; however,
ways: seems to be accurate enough. Furthermore, we see that the
actual number of false drops is independent of skew, as ex-
pected.

false drops [mio]

Sl

total false drops [mio]

2t O _

1. Ordersplaced into differen©rder partitions can have
the sameO# hash value; allLineitemsreferring to
suchOrders produce false drops. This is the same .
phenomenon as depicted in Figure 7, just transposeg Experimental Results
to theOrder-Lineitemoin. In this section, we will present experimental results con-

ducted using an experimental implementation of general-

2. False Drop Propagation: If @drder produces a false ized hash teams, partition nested loop joins, and tradi-
drop, all theLineitemsthat refer to thaOrderproduce  tional (hash-based) ways to carry out joins and aggrega-
a false drop as well. Consider, as an example, agaition. We will present the running times of our examples,
Figure 7. All Lineitemsthat refer to arOrder which  Query 1 and 2, using a synthe@@ustomer-Order-Lineitem
in turn refers to thea Customerare (falsely) copied database.
into the secondlineitempartition.

6.1 Experimental Environment
The first kind of false drop can be approximated using _ ) ) )
Formula (2). Using as the number dfineitemsandb, as ~ We integrated our implementation of generalized hash

the length of theDrder bitmaps, we get: teams and partition nested-loops into an experimental
query engine that is based on the iterator model [Gra93].

o—1 That query engine also provides iterators for traditional

Lx(n—1) % 1% b, ®) (hash-based) joins and aggregation. All code is written in



Table Tuple Width| Cardinality | Size in MB used), memory allocation was somewhat trickier because it
Customer| ~ 88bytes| 750,000 66 MB is difficult to decide how much memory to allocate to the
Order 112 bytes| 7,500,000 840 MB partitioning phase of the group-by which runs concurrently
Lineitem 72 bytes| 30,000,000] 2,160 MB with the last join—again, we experimented with different

Table 1: Database Characteristics configurations and report the best results.
C++. We installed the query engine on a Sun UltraSPAR®.2 Running Time of Query 1

station with a 167 MHz processor, 512 MB of main mem- . L . i
ory, and running Solaris 2.6. In all experiments, we varied':Igure 10 shows the running time of Query 1 using gen

eralized hash teams, partition nested loop joins, and two

U\'/: irsneo dupélgftir\?ealunsr:gr:?nrzr?q\f:'Ias?izfsoirnqgr%rgr%ogiifj;ggéraditional plans that use an ordinary hash join and hash ag-
; Y . Y . gregation to execute the query. The difference between the
a multi-user environment in which many queries run con-

currently an only little main memory is available for each two traditional plans is that early aggregation (as described
query.We made use of Solariditect 10 feature in order to in [Lar97]) is effected in one of the two plans. Early aggre-

avoid caching at the operating system level. The databa atior_1 reduces_ the size of th_e_ int_ermediate results that must
was stored on a 9 GB Seagate Barracuda disk drive ar?%e written to disk in the partitioning phase of the group-by

i . : perator. We observe that, as expected, generalized hash
;neoéget;%l?e?ylgrzgl?l?:da disk drive was used to store Ir]tert'eams and partition nested loop joins significantly outper-
N . . ._form the traditional plans in the whole range of main mem-
Our test database Is cha_rac.terlzed n Taple 1.1t ConSIStéry sizes. The traditional plans perform particularly poorly
of a Customer, OrderandLineitemtable W'th .the usual i there is only little memory available—in this case, the 10
TPC-D-style schema [TPC95]. The cardinalities of the ta- osts of the join and group-by operators are very high be-
bles are set according to the TPC-D specifications at a sc fause many small partitions must be created and thus, the

ing factor of five. In some experiments, however, we varied o «fits of saving the partitioning step for the aroun-by op-
the cardinality of theDrder table in order to demonstrate o o401 s high. I\gljote tﬁat for smgll mgmory sige tr?e rzlunr:

the scalability of the approaches along that dimension. Weyg ¢ ta|se drops is also particularly high for generalized

generated faﬂdom tuples using a uniform cjistribution Wherhash teams (Figure 8), but the extra cost due to false drops
ever appropriate. That s, ti@gustomer.Cityields are uni- 5"y ok jower than the cost of an extra partitioning step.
for_mly distributed among 75'.OOQ cities, t@edersrgferred Increasing the size of the memory, the advantages of our
uniformly to CustomersandLineitemsreferred uniformly o, approaches get smaller, but only for very large mem-
to (r?rdlfrs gsdstatsd In Sgctlon 5 '\Il;le alsohexpehrlmenteldory sizes, when the join and/or group-by can completely be
with skewed databases, but we will not show the results.a e out in memory, the traditional plans would perform
here because they were identical with the results obtamegS well as our new approaches. For Query 1, generalized
using such a uniform database. T@#andO#fields, the  aqp teams and partition nested loop joins have almost the

keys of the tables, are also generated randomly, rather thafy e performance: in this case, processing false drops is
just sequentially. A database with se_quen@#lando#2 as expensive as re-reading the reduCeder table for all
would have made the use of generalized hash teams ev mory sizes.

more attractive because absolutely no false drops would oc-
curinsuch a databaseb_ifz candb, > o. 6.3 Running Time of Query 2
As benchmark queries, we used Query 1 and 2 from T .
Sections 2 and 4. These are just two example queries fdrigure 11 shows the running time of Query 2 for various
which generalized hash teams and, to some extent, partitigtifferent plans. Again, generalized hash teams are the over-
nested loops are useful. Of course, many other exampled! winner. In this case, however, generalized hash teams
can be found and it is just as easy to find example querieg® only beneficial if a certain amount of memory is avail-
for which our new approaches are not useful (e.g., groupingble. (Recall from Section 4 that the memory require-
by an attribute of th@©rdertable). In all cases, we used the Ments increase with the number of operations that partici-
best possible plans (including the join order) and the bespate in the team.) For the traditional plans, the best memory
possible main memory allocation for each group of operaconfiguration involves carrying out the whole group-by in
tors that run concurrently in a plan. Every operator (e.g.memory so that early aggregation does notimprove the run-
scan or partitioning) that reads and writes data to disk get8ing time in these experiments. The traditional plans loose
memory so that blocks of at least 64K are read and writterfi€re because they require re-partitioning for the second join
to disk in order to avoid excessive random 10. For general(i-€., the join withLineiten). For Query 2, we studied two
ized hash teams, this minimum allocation was given to th?lans that make use of partition nested loops:Rh& O, L.
partitioning operators and the rest of the available memPlan which carries out partition nested loops for both joins,
ory was used for the bitmaps in the partitioning phase. FoAnd thePNL L plan which carries out a (traditional) hash
the traditional plans (in particular if early aggregation was/oin for Customerx Order and partition nested loops for
the join withLineitem Both plans show poor performance

2This is not unrealistic in practice because keys are typically generatedf there iS_ only little memory available, for re-reading the
sequentially by the application or database system. reduced_ineitemandOrder (for PNL O, L) tables several
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times, but both plans become better the more memory igeneralized hash teams in the situations described in this
available. All other plans, in contrast, are fairly flat. Be- paper.

yond 25 MB of memory (not shown), the partition nested  Another line of related work are approaches to optimize
loop join plans flatten out as well and show the same pergueries with group-by operations [YL94, CS94]. Our ex-

formance as generalized hash teams. ample Customer-Orderguery, for instance, could be im-
plemented by grouping th®rder table by C# before the
7 Related Work join and then grouping the result of the join IGity. In

this particular example, such a strategy would not be ben-

The use of bitmaps is becoming increasingly popular toeficial because it would involve the execution of an addi-
support decision support queries. In the database contextpnal expensive group-by operation without reducing the
bitmaps have been used to speed-up the execution of joireost of the other operations substantially. In general, how-
in distributed [Bab79, VG84] as well as centralized sys-ever, generalized hash teams and early group-by process-
tems [Bra84]. In these proposals so-called Bloom-filtersing can be used independently, and they can, in particular,
[Blo70] are used to filter out tuples without join partners. both be used together to speed-up certain decision support
[HM97] use bitmap signatures for processing joins involv- queries.
ing predicates on nested sets. Also, bitmap indexing is a
well-known concept; see, e.g., the early work on signatur :
files [CS89] or the bitmap indices in Model 204 [O'N87]. 8 Conclusion
Indexing attribute values via bitmaps [0Q97, CI98, WB98] Graefe et. al. [GBC98] developed a new hash-based pro-
and bitmap join indices [GO95] have recently received re-cessing technique calldthsh teamsvhich was integrated
newed attention in the context of query processing for daténto Microsoft's SQL Server product. This technique al-
warehouses. To the best of our knowledge, however, so fdows to “team up” several join (and grouping operators) that
nobody has used bitmaps for indirectly partitioning argu-are based on theamecolumn. This way intermediate re-
ments of hash joins (or grouping operators). partitioning is avoided in quite the same way that re-sorting

The most relevant related work are hash teams, whiclntermediate join results is avoided in sort/merge-joins.
were proposed in [GBC98]. As stated in the introduction, [GBC98]'s technique requires that all operators of a
our work extends hash teams so that they become applieam are based on the same column. In this work, we pro-
cable in situations in which the columns of the join andposed generalized hash teams which allow to “team up”
group-by operations are not the same. Sort/merge-joingin and grouping operators even if they are based on dif-
and sort-based aggregations can also be used to exectigeent columns. This, of course, makes generalized hash
join/group-by queries. Like regular hash teams, such sortteams applicable for a much larger class of queries. The
based query techniques are only attractive if the columnkey idea is indirect partitioning: A relation is partitioned
of at least some of the join and group-by operations are then an attribute that is used in a later operation and bitmaps
same. Generalized hash teams, on the other hand, are appie constructed in order to guide the partitioning of other
cable and attractive for a much wider spectrum of queriesrelations which are involved in the next operation. This

Furthermore, there have been a couple of proposaltechnique can (in theory) be applied to an arbitrary num-
to integrate join and group-by processing and for speber of relations and join and group-by operations; in prac-
cial multi-way join operators [UII89, RRS91, CM95]. In tice, however, the number of operations that participate in a
[CKK98] we devised a technique for combining sorting team is limited by the available memory needed to execute
and hash join processing. The techniques proposed in thifte team (as in traditional hash teams) and to construct the
work, however, differ significantly from the approach pro- bitmaps.
posed in this paper, and they would not perform as well as In this paper, we presented details of sggneralized



hash teamsnd carried out experiments demonstrating thglGra94] G. Graefe. Sort-Merge-Join: An idea whose time has(h)
usefulness of the approach for certain classes of decision passed? IrProc. IEEE Conf. on Data Engineeringpages
support queries. We also presented formulae that can be 406-417, Houston, TX, USA, 1994.

used by a query optimizer in order to cost out plans with[GSE"94] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and
generalized hash teams and thus decide when they are ben-P. Weinberger. Quickly generating billion-record synthetic
eficial. Furthermore, we described and evaluated another databases. IRroc. of the ACM SIGMOD Conf. on Manage-
new algorithm which we callegartition nested loopand ment of Data pages 243-252, Minneapolis, MI, USA, May
that can, in some sense, be seen as a simplified variant of 1994.

generalized hash teams. In our experiments, however, WgiCLS97] L. Haas, M. Carey, M. Livny, and A. Shukla. Seeking
could not find cases in which partition nested loops out- the truth abouad hocjoin costs.The VLDB Journgl6(3):241—
perform generalized hash teams, but we did find cases in 256, 1997.

which partition nested loops perform much worse. [HM97] S. Helmer and G. Moerkotte. Evaluation of main mem-
ory join algorithms for joins with subset join predicates. In
Acknowledgements Proc. of the Conf. on Very Large Data Bases (VLDBges

386-395, Athens, Greece, August 1997.
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