
The Tetris-Algorithm for Sorted Reading from UB-Trees∇

Volker Markl Rudolf Bayer
marklv@forwiss.tu-muenchen.de bayer@informatik.tu-muenchen.de
FORWISS München TU München
Orleanstr. 34 Orleanstr. 34
81667 München 81667 München
Germany Germany

1 Concept of the UB-Tree

1.1 Addresses, Areas and Regions
We iteratively define an area A as a special subspace of a d-dimensional cube as follows: Split the
cube with respect to every dimension in the middle, resulting in 2d subcubes numbered in some arbi-
trary but fixed order (for our implementation and this paper we used Z-ordering) from 1 to 2d. An area
A1 of level 1 consists of the first i1 closed subcubes. i1 determines A1 uniquely. We call i1 the address
of A1 and write A1 = area(i1). The empty area has the address ε.
To enlarge an area, we iteratively add an area with address i2 ∈{0,1,...,2d-1} of the next subcube with
number i1+1. The address of this enlarged area A2 is i1.i2, which is lexicographically larger than the
address i1 of area A1. Next we may enlarge A2 by adding an area of the brother subcube i2+1 of i2, etc.
The left part of figure 1 shows four areas area(0.0.1), area(1.3.2), area(2.1) and area(3) of a two-
dimensional universe. The shaded subcubes of the two-dimensional universe belong to the corre-
sponding area.

Figure 1: Areas and Regions

In the following we suppress trailing zeros of addresses and denote addresses by α,β,γ,...
We call ij the jth step of address α = i1.i2.ik.. We call k the length of the address α.
Note that the volume of a subcube decreases exponentially with its step number. We therefore obtain
a fine partitioning of the multidimensional space with relatively short addresses.
Lemma: The lexicographic order of addresses (denoted by ≤

a
) and set containment of areas in space

(denoted by ⊆) are isomorphic: area(α) ⊆ area(β) ⇔ α ≤
a
 β

Definition: A region is the difference between two areas: If α <
a
 β then we define the region between

α and β as: [α:β] := area(β) \ area(α), where "\" means "set difference". Note that regions are
disjoint and therefore partition – or tile - the universe.

∇
 This work is carried out in the research and development project MISTRAL at FORWISS and is financed by SAP, Teijin and NEC. Part of

this work is subject of the Ph.D. thesis of the first author. Additional information about the project can be found under URL
http://mistral.informatik.tu-muenchen.de.

area(0.0.1)

area(3)

area(1.3.2)

area(2.1)

Regions

Point Data

1 3 2

 1

2
1 3

The areas in figure 1 are used to create five regions: [ε : 0.0.1], [0.0.1 : 1.3.2], [1.3.2 : 2.1], [2.1 : 3],
[3 : 4]. Each region is shaded with a different gray.
Definition: A page is a fixed size byte container to store the objects or object identifiers in a region
between two successive areas. We write page([α:β]) for the page corresponding to the region[α:β].
By count([α:β]) we denote the number of objects located in [α:β].
Definition: A tuple (or pixel) is a smallest possible subcube at the limit of the resolution, but the
resolution may be chosen as fine as desired. The address of a tuple is identical to the address of the
area defined by including the tuple as the last and smallest subcube contained in this area. In the fol-
lowing we use the terms attribute of a tuple, dimension and relation column synonymously.
Lemma: A one-to-one map between Cartesian coordinates (x1,x2, ..., xd) of a d-dimensional tuple and
its address α is implicitly defined by the above addressing scheme. We use the following notations for
these maps:
alpha (x1, x2, ..., xd) = α and cart (α) = (x1, x2, ..., xd)
Since the two maps are inverses of each other we get:
cart(alpha(x1, x2, ..., xd)) = (x1, x2, ..., xd) and alpha(cart(α)) = α
If we have a set of areas we can order them according to their addresses. Since a region is the differ-
ence between two successive areas in this ordered set this also implies an order on the regions and
therefore on the corresponding pages.
We assume that we have a universe U of values. For simplicity we assume that U has v = 2r values per
dimension which are numbered 0,1,2,..., 2r-1. In this paper arbitrarily shaped spaces are simply
considered as a subset of a suitable cube-shaped universe. It is also possible to drop this assumption
and tailor the UB-Tree to the universe. This approach is described in [MB97c].
Since addresses are linearly ordered by <

a
, they can be treated as the keys of any variant of a B-tree.

New point- objects lie in a unique region. The identifiers of new objects are stored (inserted) into the
page of their region.
Definition: A UB-Tree is any variant of a B-Tree, in which the keys are addresses of regions ordered
by <

a
. The leaf pages hold objects in regions or their object identifiers.

The five regions in figure 1 build a UB-Tree for the point data displayed in the lower right corner of
figure 1. Although the regions differ in size (volume), each region stores about the same number of
points because of the storage utilization guarantees of UB-Trees. Both the upper left corner and the
lower right quarter of the universe contain five points, although the size (volume) of the region cov-
ering the lower right quarter of the universe is 16 times larger.
The UB-Tree gives logarithmic worst case guarantees for update and retrieval. Due to its
multidimensional clustering it shows superior behavior over current indexing techniques for updates,
point queries and range queries. In addition the point query performance of the UB-Tree is identical to
that of classical B-Trees with concatenated key attributes.

2 Impacts on the relational Algebra – the Tetris Algorithm
Tables organized by a UB-Tree can be read in any sort order in O(n) disk accesses where n is the
number of pages of the table or the minimal number of regions covering a query box [Bay97a]. This is
made possible by a modification of the range query algorithm and a caching technique, the so called
”Tetris-Algorithm” [MB97b]. This algorithm performs a sweep over a query box of the UB-Tree with
respect to the lexicographic order of the specified sorting dimensions (in the spirit of the well known
sweep line algorithms [PS85]). The Tetris-Algorithm works similar to the range-query algorithm. The
only difference is that the calculation of the next intersecting region does not return a region
according to Z-ordering, but according to the specified sort order: Initially the algorithm calculates the
first region that is overlapped by the query-box, retrieves it and caches it in main memory. Then it
continues to read and cache the next regions with respect to the sort order, until a complete thinnest
possible slice of the query box has been read. Then the cached tuples of this slice are sorted in main
memory, returned in sort order to the caller and removed from cache. The algorithm proceeds reading
the next slice, until all regions which intersect the query box have been retrieved and output.

The algorithm to calculate the next intersecting region with respect to the sorting dimension merely
requires one B-Tree-Search. Therefore only n disk accesses to data pages need to be performed to sort
a query box overlapped by n regions according to any of the d! sort order definable over d attributes.
Thus each page only needs to be accessed once in order to produce a sorted output in any dimension.

ξ = alpha(ql); ω = alpha(qh)
repeat

search [α:β] in the UB-Tree, so that α <a ξ ≤a β
store all tuples from page([α:β]) in the cache
if a new slice in the sorting dimension is completed

s = endpoint of the slice in the sorting dimension
sort all cached tuples
output all cached tuples where xsort ≤ s
remove all cached tuples where xsort ≤ s from cache

ξ = address of the next point intersecting the querybox
with respect to the sorting dimension

until ξ >a ω
Algorithm 1: Tetris-Algorithm for a query box (ql:qh)

The Tetris-Algorithm is illustrated in figure 2. For simplification of the presentation we assume that
the query box is the complete universe. We sort the data in the vertical dimension, i.e. from left to
right. Regions from which tuples are cached are shaded in this figure. The slice currently being
operated on has white borders. The algorithm starts by retrieving the region in the very left corner
(2a). Successive regions are retrieved and cached (2b) until a vertical slice is completed (2c). The
tuples of this slice are then sorted in main memory. All tuples up to the end coordinate of the slice in
the sorting dimension are output in sort order and removed from cache. The regions of this slice can
not be removed from cache completely at this point since each region still might have some tuples that
have not been output yet. However, not the entire regions are cached. Caching is only necessary for
those tuples that have not been output yet. Figure 2d shows the cached regions after reading the next
region, i.e., after completion of the second slice. After completion of the next slice (2e) two regions of
the first and second slice have been handled completely. These regions can be removed from cache
completely. The Tetris-Algorithm continues processing in this way until the last stripe of the query
box has been read (2f), i.e., the complete universe has been read in sort order.

3 Applications of the Tetris-Algorithm

3.1 Range Queries
The Tetris-Algorithm may be used to replace the standard range query algorithm for UB-Trees
described in [Bay96] and [MB97a]. In this case the Tetris-Algorithm does not need to cache tuples
until the completion of a slice in a certain dimension. Instead, tuples may be processed immediately
after a data page has been retrieved.

3.2 Sorted Reading of Relations
The main goal of the Tetris-Algorithm is to speed up sorted reading of relations. If the first sort-
attribute is a UB-Tree attribute, the Tetris algorithm reading slices with respect to this attribute can be
used to read the relation in sort order. Sorted reading is required for the efficient processing of most
of the operations of the relational algebra, such as projection, ordering and joining of relations. See
[Bay97a] for a description of algorithms using UB-Trees for these operations. The necessary cache
size for sorted reading with the Tetris-Algorithm for uniformly distributed data is approximated by p(d-

1-r)/d, whereby p is the number of pages, d is the dimensionality of the UB-Tree and r is the number of
restricted dimensions.

(a) (b)

(c) (d)

(e) (f)

Figure 2: Sorted Reading in UB-Trees with the Tetris-Algorithm

3.3 Grouping and Aggregation
The ability to read data in sort order with respect to any dimension of the UB-Tree also enables
efficient grouping and aggregation without the need of externally sorting a relation. The basic
algorithm is identical to algorithm 1. A lower cache size compared to sorted reading is required, if
several dimensions are specified for the grouping and if the data does not need to be sorted. In this
case a cache size of p(d-g-r)/d pages is necessary to perform the grouping. p, d and r are defined as in the
previous section and g is the number of attributes specified for grouping.

4 Speeding up the Relational Algebra
UB-Trees and the Tetris-Algorithm can tremendously speed up the operations of the relational
algebra. For example, the SQL-query
SELECT avg(f) FROM t WHERE a= x1 and b = x2 GROUP BY c, d, e ORDER BY c

against the 6-dimensional UB-Tree (a,b,c,d,e,f) consisting of p = 106 pages requires a cache size of
106*((6-1-2)/6) = 103 pages to perform the operation. Only 106-2 = 104 pages need to be retrieved from disk
to perform the operation. Traditional techniques would require a merge sort of 106 pages. With a
cache size of 103 pages this means 106 * log1000 106 = 2 * 106 disk accesses for reading, and the same
number of disk accesses for writing the data during the merge sort algorithm. The restriction of the
WHERE-clause can in general not be used. This is only possible if the first attribute of the primary
index were specified in the WHERE-clause. All in all we get 4 * 106 disk accesses for the merge sort
and 104 disk accesses for the Tetris-algorithm. If one disk access takes 10ms, the UB-Tree answers the
query in 10 seconds. In contrast, the standard technique takes more than 1 hour to answer the same
query.
Proper data modeling is still necessary, since a query without selection and one sort attribute against a
6 dimensional UB-Tree would achieve no reduction of the disk pages and result in a cache size of p5/6.
In this case it could make sense to use a UB-Tree of a lower dimensionality in order to reduce cache
sizes. Thus the choice of index attributes is a critical data modeling question that depends on the data-
base schema and the query profile. We are currently investigating data modeling with UB-Trees in our
Research Group.
Generally speaking, the Tetris-Algorithm allows joining, grouping, aggregation, projection and any
other operation where sorted reading of a relation (or parts of it) is involved in O(n) disk accesses,
whereby n is the number of pages needed to store the data. An additional selection may be used to
reduce the necessary disk accesses, if the restricted attributes are also part of the UB-Tree. A further
advantage of the Tetris-Algorithm is that it needs no disk space to perform the operation. Only a main
memory cache is required which in general is smaller than the main memory cache required for a
good performance of the merge sort algorithm.

5 Conclusions and Future Work
The Tetris algorithm for database relations organized by a UB-Tree can speed up any query, where
sorting, grouping and multi-dimensional restrictions are involved. Currently we are implementing the
algorithm and will evaluate its performance for both OLTP and OLAP applications. We also
investigate data modeling with the presence of multi-dimensional indexes in order to get a new
methodology for schema evolution. Practical test beds for the UB-Tree and the Tetris algorithm will
be the queries of the TPC-D benchmark as well as typical queries and schemata of our project
partners.

References
[Bay96] Bayer, R.: The universal B-Tree for multidimensional Indexing. Technical Report TUM-

I9637, Institut für Informatik, TU München, 1996
[Bay97a] Bayer, R.: The universal B-Tree for multidimensional Indexing: General Concepts. - In:

World-Wide Computing and Its Applications '97 (WWCA '97), Tsukuba, Japan, 10-11,
Lecture Notes on Computer Science, Springer Verlag, March, 1997.

[Bay97b] Bayer, R.: UB-Trees and UB-Cache – A new Procesing Paradigm for Database Systems.
Technical Report TUM-I9722, Institut für Informatik, TU München, 1997

[MB97a] Markl, V.; Bayer, R.: A Cost Model for multidimensional Queries in Relational Database
Systems, Internal Report, FORWISS München, 1997

[MB97b] Markl, V.; Bayer, R.: The Tetris-Algorithm for multidimensional Sorted Reading from
UB-Trees, Internal Report, FORWISS München, 1997

[MB97c] Markl, V.; Bayer, R.: Variable UB-Trees for the efficient Indexing of arbitrarily
distributed multidimensional Data, Internal Report, FORWISS München, 1997

[PS85] Preparata, F.P.; Shamos, M. I.: Computational Geometry: An Introduction. Springer-
Verlag, New York, 1985

