XML Databases: Modelling and Multidimensional Indexing

Rudolf Bayer

Sept. 3, 2001

XML Document as an XML Tree
<Paper>
<Title>
<Authors>
<LN>
<Affiliation> </Authors> <Authors>
<FN>
<LN>
<LN>
<Affiliation> </Authors>
<Keywords>
<Keywords>
<Keywords>
<Abstract>
<Text>
<BibRec>
<Authors>
</Authors>
<Authors>

<LN>

</Authors>
<Title>
</BibRec>
</Paper>
DEXA, Sept. 3, 2001

MISTRAL	</Title>
Rudolf	</FN>
Bayer	</LN>
Techn. Univ.	</Affiliation>
Volker	</FN>
Markl	</LN>
FORWISS	</Affiliation>
UB-tree	</Keywords>
POT	</Keywords>
Region	</Keywords>
a piece of text	
more text	</Text>
Fenk	</LN>
Ramsak	</LN>
DW Queries	</Title>

R. Bayer, TUM

2

XML Basics

1. Every XML document is an ordered tree with labeled branches, many potential representations
2. The structure of the tree is described by a DTD
3. Parsing a document is trivial w.r. to wellformedness or conformance with a given DTD

DTD for the Document <Paper>

```
<DOCTYPE Paper [
    <!ELEMENT Paper (Title, Authors*, Keyword*,
            Abstract?, Text, BibRec*)>
        <!ELEMENT Title (#PCDATA)>
        <!ELEMENT Authors (FN?, LN, Affiliation?)>
        <!ELEMENT FN (#PCDATA)>
        <!ELEMENT LN (#PCDATA)>
        <!ELEMENT Affiliation (#PCDATA)>
        <!ELEMENT Keywords (#PCDATA)>
        <!ELEMENT Abstract (#PCDATA)>
        <!ELEMENT Text (#PCDATA)>
        <!ELEMENT BibRec (Author*, Title)>
    ]
```


Operations with Trees

- store in rel. DBMS
- find documents based on path search predicates
- retrieve parts of found documents
- insert and delete documents in a DB
- modify documents, i.e. delete and insert subtrees of a document

Note: in RDBMS we deal with complete tuples,
in XML we deal with partial documents

Path Notation and Identical Paths

<Paper>
<Authors>
[1]
<LN>
Bayer
<Paper>
<Authors> [2]
<LN> Markl
Distinguish paths by repetition numbers, in document fixed by order of the text
$\rightarrow \quad$ Paths become unique within a document, use them as attributes in a universal relation XML-Rel

Universal Relation XML-ReI:

with Attribute Paths APi

```
    Did AP1 AP2 AP3 ... Apk
```

Use path notation for attributes:
Paper/Authors[2]/LN MarkI

Every document is exactly one tuple in XML-Rel with unbounded number of attributes

Document with

DTD and	Data Instance		
Paper			
Title	MISTRAL		
Authors*			
FN	Rudolf	Volker	
LN	Bayer	MarkI	
Affiliation	TU	FORWISS	
Keywords*	UB-tree	POT	Region
Abstract	a piece of text		
Text	more text		
BibRec*			
Authors*			
LN	Fenk	Ramsak	
Title	DW Queries		

DTD with Numbering per Level and Repetition Numbers

```
Paper
    1 Title MISTRAL
        1 Title
                1 FN
            2 LN
                3 Affiliation
    3 Keywords*
    Abstract
    5 \text { Text}
    6 \text { BibRec*}
            1 Authors*
                    2 LN
            2 Title
                            F
                            Fenk
                DW Queries
                    [1] [2]
                                Rudolf
                                Volker
                                Bayer
                                MarkI
                TU
                [1]
                                    UB-tree POT
                                    FORWISS
                                    [2] [3]
                            a piece of text
                            more text
                            [1]
                            [1]
                            [2]
                                Ramsak
\begin{tabular}{lll} 
MISTRAL & & \\
[1] & {\([2]\)} & \\
Rudolf & Volker & \\
Bayer & Markl & \\
TU & FORWISS & \\
[1] & [2] & [3] \\
UB-tree & POT & Region \\
a piece of text & & \\
more text & & \\
[1] & & \\
[1] & [2] & \\
Fenk & Ramsak & \\
DW Queries & &
\end{tabular}
```


Surrogate-Patterns and Path-Expressions: 1ヵ1

Surr-P	Path-Expressions	Examples of Paths
1	Title	
2.*	Authors*	Authors[1], Authors[2],...
2.*.1	Authors*/FN	Authors[1]/FN
2.*.2	Authors*/LN	Authors[1]/LN
2.*.3	Authors*/Affiliation	
3*	Keywords*	
4	Abstract	
5	Text	
6.*	BibRec*	
6.*.1.*	BibRec*/Authors*	BibRec[1]/Authors[1], ...
6.*.2	BibRec*/Title	BibRec[1]/Title, ...

Surrogate patterns reflect ordering!

Some Paths,	Values	Surrogates
Title	MISTRAL	1
Authors[1]/FN	Rudolf	$2[1] 1$
Authors[1]/LN	Bayer	$2[1] 2$
Authors[1]/Affiliation	Techn. Univ.	$2[1] 3$
Authors[2]/FN	Volker	$2[2] 1$
..		
Keywords[3]	Region	$3[3]$
Abstract	a piece of text	4
..		
BibRec[1]/Authors[2]/LN	Ramsak	$6[1] 1[2] 1$
BibRec[1]/Title	DW Queries	$6[1] 2$

Note: from surrogates and values we can reconstruct the original document with the help of an additional surrogate to tag mapping, which is stored in an additional table

Mapping for XML-Rel:

XML-Rel with Attribute Paths APi
Did AP1 AP2 AP3 ... APk
is mapped to

XML-Quad
Did Attr-Path Value Surrogate
with candidate keys (Did, Attr-Path) or (Did, Surrrogate)

Decompose XML Quad into two relations

Type-Dim to replace Attribute-Paths by Surrogates
Attr-Path Surrogate Type
and relation
XML-Ind for XML Index
Did Surrogate Value
define view XML-Quad as
select Did, Surrogate, Attr-Path, Value
from Type-Dim T, XML-Ind X
where T.Surrogate $=$ X.Surrogate

Relation XML-Ind for decomposed XML-Quad

Did Surrogate
71

7 2[1]1
...
2[2]1
2[2]2
2[2]3
3[1]
3[2]
3[3]
4
5
6[1]1[1]2
6[1]1[2]2
$7 \quad 6[1] 2$
Value
MISTRAL
Rudolf
Volker
Markl
FORWISS
UB-Tree
POT
Region
a piece of text
more text
Fenk
Ramsak DW Queries

Observations

- lexicographic ordering of surrogates properly represents document order
- subtrees, like for Author[2] correspend to intervals of surrogates
- very compact representation of XML documents
- 3-dimensional table
- most queries have 2 restrictions

User Queries and DML Statements

select Paper/Title from XML-Rel
where Paper/Authors[1]/LN = 'Bayer'

Note: if the repetition number of the author is not known, we write
where Paper/Authors[\$i]/LN = 'Bayer'
in order to instantiate the variable [\$i] properly

Rewriting the XML-Rel Query

select Paper/Title
from XML-Rel
where Paper/Authors[1]/LN = 'Bayer'
is rewritten into 2 queries:
select Did into Did-Set
from XML-Quad
where Attr-Path = 'Paper/Authors[1]/LN' and Value = ‘Bayer’ ;
select Value
from XML-Quad
where Attr-Path = 'Paper/Title' and Did in Did-Set

Another Rewriting of the XML-Rel Query

select Paper/Title
from XML-Rel
where Paper/Authors[1]/LN = 'Bayer'
is rewritten into a single join-query:
select Q2.value
from XML-Quad Q1, XML-Quad Q2
where (Q1.Attr-Path = 'Paper/Authors[1]/LN' and
Q1.Value = 'Bayer') and
(Q2.Did = Q1.Did and
Q2.Attr-Path = 'Paper/Title')

General Join Rewriting of XML-Rel to XML-Quad

select $A P i, A P j$
from XML-Rel where $A P k=c 1$ and $A P I=c 2$

Is rewritten into:
select T3.Value, T4.Value
from XML-Quad T1, XML-Quad T2, XML-Quad T3, XML-Quad T4
where T1.Attr-Path = 'APk' and T1.Value $=\mathrm{c} 1$ and
T2.Attr-Path = 'API' and T2.Value =c2 and T3.Attr-Path = 'APi' and
T4.Attr-Path = 'APj' and and T1.Did $=$ T2. Did and T2.Did $=$ T3. Did and $\mathrm{T} 3 . \mathrm{Did}=\mathrm{T} 4$. Did

Transformation of previous Query

select T3.Value, T4.Value
from XML-Quad T1, XML-Quad T2, XML-Quad T3, XML-Quad T4
where T1.Attr-Path = 'APk' and T1.Value $=c 1$ and
T2.Attr-Path = 'API' and T2.Value $=c 2$ and

T1.Did $=$ T2. Did

T3.Attr-Path = 'APi' and T3.Did $=$ T1.Did
T4.Attr-Path = 'APj' and T4.Did = T1.Did

UB-Trees: Multidimensional Indexing

- geographic databases (GIS)
- Data-Warehousing: Star Schema
- all relational databases with $\mathrm{n}: \mathrm{m}$ relationships

($\underline{r}, \underline{\mathbf{s}}$)
- mobile, location based applications
- XML

Typical Queries on XML-Quad

Did Attr-Path Value Surrogate
find documents written by Markl
Leads to two restrictions:
Attr-Path $=$,Author[\$i]/LN' and Value $=$,Markl ${ }^{\text {c }}$
Retrieve Title of found documents with Did $=k$
Again two restrictions:
Attr-Path =, Title‘ and Did $=k$
Change spelling errror from ,Rudolph‘ to ,Rudolf‘ in Did 1274
Did $=1274$ and Attr-Path = Author[1]/FN
\rightarrow Suitable for mulitdimensional indexing!!

Basic Idea of UB-Tree

- linearize multidimensional space by space filling curve, e.g. Z-curve or Hilbert
- use Z-address as key to store objects in B-Tree
\rightarrow Response time for query is proportional to size of the answer!

UB-Tree: Regions and Query-Box

Z-region
[0.1: 1.1.1]

QB1: select Paper/Title \quad where
Paper/Authors[1]/LN $=$ 'Markl'

Rewriting results in a 2-dimensinal restriction, i.e. a line query $L Q$
where Attr-Path =,Paper/Authors[1]/LN‘ and Values $=$, Markl $^{\text {' }}$

Assumptions: for the analysis of queries

- 10^{6} documents with $10^{4} \mathrm{~B}$ each
- this results in a DB of 10 GB with
- 10^{6} pages
\rightarrow Each dimension of a 3 dimensional cube spans about 100 pages, i.e. $\quad D=100$
i.e. the number of pages „skewered" by LQ

Algorithm and Complexity for QB1:

for each hit \boldsymbol{h} on line query LQ there is a document $\boldsymbol{d}(\boldsymbol{h})$ finding all hits is $O(D)$
$\boldsymbol{d}(\boldsymbol{h})$ corresponds to a plane slice $\boldsymbol{s}(\boldsymbol{h})$ intersecting $\quad O\left(D^{2}\right)$ pages
Title correspond to a line through $\boldsymbol{s}(\boldsymbol{h})$
therefore only $O(D)$ pages must be fetched from $\boldsymbol{s}(\boldsymbol{h})$
Complexity per retrieved hit: $\quad O(D) \sim 1 \mathrm{sec} / \mathrm{hit}$
$\rightarrow \quad$ Response time = size of answer * $1 \mathrm{sec} / \mathrm{hit}$

Query QB2: "Get Titles and Authors of papers, in which papers coauthored by Markl and Ramsak are cited"
select D1/Paper/Title, D1/Paper/Authors*
from Documents D1, Documents D2
where D1/Paper/BibRec[\$i]/Authors[\$j]/LN = 'Markl' and D2/Paper/BibRec[\$k]/Authors[\$m]/LN = ‘Ramsak’ and D1/Paper/BibRec[\$i] = D2/Paper/BibRec[\$k]

Note: the last (join) condition is checked on the surrogates of D1...BibRec and D2...BibRec (note that several variables: Paper, \$i and BibRec are instantiated by this) and the projection list is retrieved via a generalized Tetris algorithm

Classification and Complexity of Queries

- n no restriction,
- i interval of breadth $\boldsymbol{\beta}$,
- c constant,
- $D^{3}=P=$ number of pages in $D B$

Assumption: $P=10^{6}$ pages $=8 \mathrm{~GB}$,
$D=100$,
300 pages per second from disk, time estimates in seconds, restrictions 10% or less.

Restr Query-Box \# of pages Time

$\mathrm{n} \mathbf{n} \mathbf{n}$	universe	D^{3}	$<$	3000	
in n	slice	$\beta D^{3} \quad$ or D^{2}	<	300 or	30 for plane
i in	pillar	$\beta_{1} \beta_{2} D^{3}$ or D	<	30 or	1 for line
iii	box	$\beta_{1} \beta_{2} \beta_{3} D^{3}$	<	3	
cnn	plane	D^{2}	$<$	30	
cin	stripe	$\beta_{1} D^{2}$	<	3	
cii	rectangle	$\beta_{1} \beta_{2} \mathrm{D}^{2}$	<	1	
ccn	line	D	$<$	1	
cci	line interval	$\beta_{1} \mathrm{D}$	<	1	
ccc	point	const	<	1	

