XML Databases: Modelling and Multidimensional Indexing

Rudolf Bayer Sept. 3, 2001

```
XML Document as an XML Tree
<Paper> <Title>
                                  MISTRAL
                                                        </Title>
  <Authors>
                                  Rudolf
                                  Bayer
           <Affiliation>
                                  Techn. Univ.
                                                        </Affiliation>
    </Authors>
  <Authors>
                                  Volker
                                                        </FN>
           <Affiliation>
                                  FORWISS
                                                        </Affiliation>
    </Authors>
                                 UB-tree
  <Keywords>
                                                        </Keywords>
  <Keywords>
                                  POT
                                                        </Keywords>
                                                        </Keywords>
                                  Region
  <Abstract>
                                  a piece of text
                                                                    </Abstract>
                                                        </Text>
  <BibRec>
           <Authors>
                                                        </LN>
                      <LN>
                                  Fenk
             </Authors>
                                  Ramsak
                                                        </LN>
            </Authors>
           <Title>
                                  DW Queries
                                                        </Title>
    </BibRec>
  </Paper>
DEXA, Sept. 3, 2001
                                        R. Bayer, TUM
                                                                                             2
```

XML Basics

- 1. Every XML document is an ordered tree with labeled branches, many potential representations
- 2. The structure of the tree is described by a DTD
- 3. Parsing a document is trivial w.r. to wellformedness or conformance with a given DTD

DEXA, Sept. 3, 2001

R. Bayer, TUM

3

DTD for the Document <Paper>

DEXA, Sept. 3, 2001

R. Bayer, TUM

Operations with Trees

- · store in rel. DBMS
- find documents based on path search predicates
- · retrieve parts of found documents
- insert and delete documents in a DB
- modify documents, i.e. delete and insert subtrees of a document

Note: in RDBMS we deal with complete tuples, in XML we deal with partial documents

DEXA, Sept. 3, 2001 R. Bayer, TUM 5

Path Notation and Identical Paths

<Paper>

<Authors> [1]

<LN> Bayer

<Paper>

<Authors> [2]

<LN> Marki

Distinguish paths by repetition numbers, in document fixed by order of the text

→ Paths become unique within a document, use them as attributes in a universal relation XML-Rel

DEXA, Sept. 3, 2001

R. Bayer, TUM

Universal Relation XML-Rel:

with Attribute Paths APi

Did AP1 AP2 AP3 ... Apk

Use path notation for attributes:

Paper/Authors[2]/LN Markl

Every document is exactly one tuple in XML-Rel with unbounded number of attributes

DEXA, Sept. 3, 2001 R. Bayer, TUM

Document with

Docui	ment w	itn		
DTD	and	Data Instan	ce	
Paper				
Title		MISTRAL		
Author	s*			
	FN	Rudolf	Volker	
	LN	Bayer	Markl	
	Affiliation	TU	FORWISS	
Keywo	rds*	UB-tree	POT	Region
Abstrac	ct	a piece of text		
Text		more text		
BibRed	*			
	Authors*			
	LN	Fenk	Ramsak	
	Title	DW Queries		
DEXA, Sept. 3	3, 2001	R. Bayer, TUM		8

DTD with Numbering per Level and Repetition Numbers Paper 1 Title MISTRAL 2 Authors* [1] 1 FN Rudolf Volker 2 LN Bayer Markl 3 Affiliation TU **FORWISS** 3 Keywords* [1] [2] POT **UB-tree** Region 4 Abstract a piece of text 5 Text more text 6 BibRec* [1] 1 Authors* [1] 2 LN Fenk Ramsak 2 Title **DW Queries** DEXA, Sept. 3, 2001 R. Bayer, TUM

Surrogate-Patterns and Path-Expressions: 1+1

Surr-P	Path-Expressions	Examples of Paths
1	Title	
2.*	Authors*	Authors[1], Authors[2],
2.*.1	Authors*/FN	Authors[1]/FN
2.*.2	Authors*/LN	Authors[1]/LN
2.*.3	Authors*/Affiliation	
3*	Keywords*	
4	Abstract	
5	Text	
6.*	BibRec*	
6.*.1.*	BibRec*/Authors*	BibRec[1]/Authors[1],
6.*.2	BibRec*/Title	BibRec[1]/Title,

Surrogate patterns reflect ordering!

Some Paths,	Values	Surrogates
Title Authors[1]/FN Authors[1]/LN Authors[1]/Affiliation Authors[2]/FN	MISTRAL Rudolf Bayer Techn. Univ. Volker	1 2[1]1 2[1]2 2[1]3 2[2]1
Keywords[3] Abstract	Region a piece of text	3[3] 4
BibRec[1]/Authors[2]/LN BibRec[1]/Title	Ramsak DW Queries	6[1]1[2]1 6[1]2

Note: from surrogates and values we can reconstruct the original document with the help of an additional surrogate to tag mapping, which is stored in an additional table

DEXA, Sept. 3, 2001 R. Bayer, TUM 11

Mapping for XML-Rel:

XML-Rel with Attribute Paths APi

Did AP1 AP2 AP3 ... APk

is mapped to

XML-Quad

Did Attr-Path Value Surrogate

with candidate keys (Did, Attr-Path) or (Did, Surrrogate)

Decompose XML Quad into two relations

Type-Dim to replace Attribute-Paths by Surrogates

Attr-Path Surrogate Type

and relation

XML-Ind for XML Index

Did Surrogate Value

define view XML-Quad as

select Did, Surrogate, Attr-Path, Value

from Type-Dim T, XML-Ind X

where T.Surrogate = X.Surrogate

DEXA, Sept. 3, 2001 R. Bayer, TUM

Relation XML-Ind for decomposed XML-Quad

Did 7 7	Surrogate 1 2[1]1	Value MISTRAL Rudolf
	2[2]1 2[2]2 2[2]3 3[1] 3[2] 3[3] 4 5	Volker Markl FORWISS UB-Tree POT Region a piece of text more text
7	6[1]1[1]2 6[1]1[2]2 6[1]2	Fenk Ramsak DW Queries

DEXA, Sept. 3, 2001

R. Bayer, TUM

14

Observations

- lexicographic ordering of surrogates properly represents document order
- subtrees, like for Author[2] correspend to intervals of surrogates
- very compact representation of XML documents
- 3-dimensional table
- most queries have 2 restrictions

DEXA, Sept. 3, 2001 R. Bayer, TUM

User Queries and DML Statements

select Paper/Title from XML-Rel
 where Paper/Authors[1]/LN = 'Bayer'

Note: if the repetition number of the author is not known, we write

where Paper/Authors[\$i]/LN = 'Bayer'

in order to instantiate the variable [\$i] properly

Rewriting the XML-Rel Query

```
select Paper/Title
```

from XML-Rel

where Paper/Authors[1]/LN = 'Bayer'

is rewritten into 2 queries:

select Did into Did-Set

from XML-Quad

where Attr-Path = 'Paper/Authors[1]/LN' and

Value = 'Bayer';

select Value

from XML-Quad

where Attr-Path = 'Paper/Title' and

Did in Did-Set

DEXA, Sept. 3, 2001

R. Bayer, TUM

17

Another Rewriting of the XML-Rel Query

select Paper/Title

from XML-Rel

where Paper/Authors[1]/LN = 'Bayer'

is rewritten into a single join-query:

select Q2.value

from XML-Quad Q1, XML-Quad Q2

where (Q1.Attr-Path = 'Paper/Authors[1]/LN' and

Q1.Value = 'Bayer') and

(Q2.Did = Q1.Did and

Q2.Attr-Path = 'Paper/Title')

DEXA, Sept. 3, 2001

R. Bayer, TUM

General Join Rewriting of XML-Rel to XML-Quad

```
select APi, APj
from XML-Rel where APk = c1 and API = c2
```

Is rewritten into:

```
select T3.Value, T4.Value
from XML-Quad T1, XML-Quad T2, XML-Quad T3, XML-Quad T4
where T1.Attr-Path = 'APk' and T1.Value = c1 and
T2.Attr-Path = 'APl' and T2.Value = c2 and
T3.Attr-Path = 'APi' and
T4.Attr-Path = 'APj' and
and T1.Did = T2.Did
and T2.Did = T3.Did
and T3.Did = T4.Did
```

DEXA, Sept. 3, 2001

R. Bayer, TUM

19

Transformation of previous Query

```
select T3.Value, T4.Value
from XML-Quad T1, XML-Quad T2, XML-Quad T3, XML-Quad T4
where T1.Attr-Path = 'APk' and T1.Value = c1 and
T2.Attr-Path = 'API' and T2.Value = c2 and

T1.Did = T2.Did

T3.Attr-Path = 'APi' and T3.Did = T1.Did
T4.Attr-Path = 'APj' and T4.Did = T1.Did
```

DEXA, Sept. 3, 2001

R. Bayer, TUM

UB-Trees: Multidimensional Indexing

- geographic databases (GIS)
- Data-Warehousing: Star Schema
- all relational databases with n:m relationships

- · mobile, location based applications
- XML

DEXA, Sept. 3, 2001

R. Bayer, TUM

21

Typical Queries on XML-Quad

Did Attr-Path Value Surrogate

find documents written by Markl

Leads to two restrictions:

Attr-Path = ,Author[\$i]/LN' and Value = ,Markl'

Retrieve Title of found documents with Did = k

Again two restrictions:

Attr-Path = ,Title' and Did = k

Change spelling errror from ,Rudolph' to ,Rudolf' in Did 1274

Did = 1274 and Attr-Path = Author[1]/FN

→ Suitable for mulitdimensional indexing!!

DEXA, Sept. 3, 2001

R. Bayer, TUM

Basic Idea of UB-Tree

- linearize multidimensional space by space filling curve, e.g. Z-curve or Hilbert
- use Z-address as key to store objects in B-Tree
- → Response time for query is proportional to size of the answer!

QB1: select Paper/Title **where** Paper/Authors[1]/LN = 'Markl'

Rewriting results in a 2-dimensinal restriction, i.e. a line query LQ

where Attr-Path = ,Paper/Authors[1]/LN'
and Values = ,Markl'

DEXA, Sept. 3, 2001

R. Bayer, TUM

Assumptions: for the analysis of queries

- 10⁶ documents with 10⁴ B each
- this results in a DB of 10 GB with
- 10⁶ pages
- → Each dimension of a 3 dimensional cube spans about 100 pages, i.e. D = 100
 i.e. the number of pages "skewered" by LQ

DEXA, Sept. 3, 2001 R. Bayer, TUM

Algorithm and Complexity for QB1:

for each hit h on line query LQ there is a document d(h)

finding all hits is

O(D)

d(h) corresponds to a plane slice **s(h)**

intersecting

O(D2) pages

Title correspond to a line through s(h)

therefore only

O(D)

pages must be fetched from s(h)

Complexity per retrieved hit: $O(D) \sim 1 \text{ sec/hit}$

Response time = size of answer * 1 sec/hit

DEXA, Sept. 3, 2001 R. Bayer, TUM 29

Query QB2: "Get Titles and Authors of papers, in which papers coauthored by Markl and Ramsak are cited"

select D1/Paper/Title, D1/Paper/Authors*

from Documents D1, Documents D2

where D1/Paper/BibRec[\$i]/Authors[\$j]/LN = 'Markl' and

D2/Paper/BibRec[\$k]/Authors[\$m]/LN = 'Ramsak' and

D1/Paper/BibRec[\$i] = D2/Paper/BibRec[\$k]

Note: the last (join) condition is checked on the surrogates of D1...BibRec and D2...BibRec (note that several variables: Paper, \$i and BibRec are instantiated by this) and the projection list is retrieved via a generalized Tetris algorithm

DEXA, Sept. 3, 2001

R. Bayer, TUM

Classification and Complexity of Queries

- **n** no restriction,
- i interval of breadth β,
- c constant,
- $D^3 = P = number of pages in DB$

Assumption: P = 10⁶ pages = 8 GB,

D = 100,

300 pages per second from disk, time estimates in seconds, restrictions 10% or less.

Restr	Query-Box	# of pages	Ti	me	
n n n	universe	D^3	<	3000	
i n n	slice	β D ³ or D ²	<	300 or	30 for plane
iin	pillar	$\beta_1 \beta_2 D^3$ or D	<	30 or	1 for line
iii	box	$\beta_1 \beta_2 \beta_3 D^3$	<	3	
c n n	plane	D^2	<	30	
cin	stripe	β_1 D ²	<	3	
cii	rectangle	$\pmb{\beta_1} \; \pmb{\beta_2} \; D^2$	<	1	
ссn	line	D	<	1	
ссі	line interval	eta_1 D	<	1	
ссс	point	const	<	1	
DEXA, Sept	. 3, 2001	R. Bayer, TUM			