Copyright 1999 The International Institute for Advanced Studies in Systems Research and Cybernetics . Published in the Proceedings of Datalnases, We
Cooperative Systems (DWACOS) 1999 in Baden-Baden, Germany. Personal use of this material is permitted.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without permission inrwiitieg fr
publisher.

Contact: International Institute for Advanced Studies in Systems Research and Cybernetics, c/o Dr. George E. Lasker, University of Windso©méandso
Canada N9B 3P4.

IMPROVING MULTIDIMENSIONAL RANGE QUERIES
OF NON RECTANGULAR VOLUMES SPECIFIED
BY A QUERY BOX SET

Robert Fenk Volker Markl Rudolf Bayer

Bavarian Research Center
for Knowledge Based Systems
OrleansstralRe 34, 81667 Munich, Germany
Phone: +49-89-48095-216, -191
Fax: +49-89-48095-203

E—mail: {fenk,markl }@forwiss.de ,bayer@in.tum.de

ABSTRACT

Standard range queries for multidimensional index structures only allow one restriction per
dimension, describing a rectangular range (catieery bo¥ of the multidimensional data
cube which contains the requested data. This is not sufficient to specify any kind of volume
(e.g., non rectangular or disjoint volumes) and a bounding box might not be a good solution
either. Additionally common data warehousing queries operating on multidimensional data
seldom result in a single query box.

This article shows where the problems of sequential processing of a query box set come from
and presents an algorithm avoiding them for multidimensional data cubes represented by a
space filling curve and a one dimensional index structure. The theoretical improvements are
compared with practical measurements based on a prototype implementation of the UB—Tree.

KEYWORDS
Query-processing; query-box set; multidimensional index; space—filling curve; UB-Tree.

INTRODUCTION

Both, the size of databases and the requirements for database systems have grown in almost
all application domains and the commonly used data structures and algorithms are beginning
to reach their limitation in certain application fields like data—mining and data—warehousing.
Improvements become necessary, because multidimensional data models become popular, but
common DBMSs can not deal efficiently with these. In the area of query processing two main
components can be improved: The access methods and the range query algorithms. Research
on access methods focuses on various multidimensional (MD) index structures like Grid—File
(Nievergelt et al, 1984), hB—Tree (Lomet and Salzberg, 1990), variants of R—Trees (Beckmann
et al, 1990; Sellis et al, 1987), and space filling curves is combination with one-dimensional
access methods (Orenstein et al, 1984; Jagadish, 1990). These methods want to succeed the
B—Tree (Bayer and McCreight, 1972) and replace multiple secondary indexes.

Additional improvements can be made with optimized range query algorithms for special prob-
lems, e.g., non blocking sorted reading of requested data (Markl et al, 1999) or queries for non

rectangular ranges of the MD data. A rectangular range query can be specified by a set of query
boxes, but range query algorithms for common MD index structures have to process this set of
query boxes sequentially. This may result in a significant overhead caused by multiple accesses
to some pages. In addition, page accesses may occur in an order different to the physical order
of the pages on disk.

DBMSs are still I/O bound and therefore it is important how many disk accesses are necessary
and how good caching is utilized. Random disk accesses to a number of pages are much slower
than reading pages in sequential order, because current operating systems and hard disks pro-
vide a pre-fetching strategy. Subsequent requests will often require just this pre-fetched data
and therefore can be served by the cache in a very fast way. Another argument is that position-
ing of the read/write head of a hard disk is responsible for most of the response time required by
random disk accesses. The conclusion is to avoid random or non linear disk accesses whenever
possible. Applied to the processing of a query box set, this means that multiple page accesses
should be avoided and a set of pages, required to answer the query, should be processed in
the order as they are clustered. Especially in the field of data—warehousing and data—mining,
databases are created by bulk loading of sorted data and as a result of this can provide perfect
clustering according to the used index. Other database applications can archive this only by a
expensive reorganizing of the data.

The presented algorithm reduces the load on multidimensional databases used for queries re-
sulting in a set of query boxes, because processing the query boxes will require no cache for
multiple intersected pages. This is especially interesting for cooperatively used databases, since
there is less cache memory for each parallel queries when they differ in the requested volume.

RELATED WORK

MD models often use the term of a data cube storing tuples, where the dimensions of the cube
are the key attributes which are used to access the data within the cube. MD index structures
are used to efficiently extract that part of the data cube which contains requested data. In
contrast to index structures, a full table scan (FTS) subsequently loads all pages and extracts
only the matching tuples. It knows nothing about a MD model and can not utilize restrictions
to minimizel/O operations.

The main difference between MD index structures (Gaede ande® 1997) is the way how

they perform space partitioning into regions which contents is stored on one disk page per
region. Disjoint space partitioning should be preferred, because it allows better performance
guarantees for the basic operations. One way to achieve this is to linearize the data cube with

a space filling curve and partition the cube into disjoagionswhich are specified by disjoint
intervals on the space filling curve. A region can be denoted adidsesgnumber) of the last

point on the space filling curve inside the region, since the beginning of the region is the origin

of the curve or the end of the previous region. Now, a one dimensional index structure can use
these addresses as separators and store tuples within a region on one page. If those pages are
also stored in address order, we speak of inter page clustering.

The UB-Tree (Bayer, 1996 and 1997) is one of these MD index structures using the Z—Order to
linearize the MD space and patrtition it into disjoint regions, which are stored in a B—Tree. The
figures and measurements that follow will use it representative for the other index structures
based on a space filling curve.

MULTI DIMENSIONAL RANGE QUERIES

A MD range query is specified by an interval for each dimension. The requested range of the
data cube is the Cartesian product of the interval on each dimension and is caltpcetite

box In other words aange queryis specified by a MD interval and the result of the query are
those tuples in the MD interval.

In order to answer a range query, only those regions, which properly intersect the query box,
have to be fetched from disk. These regions should be read in address order to gain opti-
mal benefit from inter page clustering. Tuples on these pages lying within the query box are
extracted and returned as a part of the query result.

PROCESSING A SET OF QUERY BOXES

One way to process a set of query boxes is sequential processing with the standard range query
algorithm for the used index structure. However this is no good solution if the query boxes
intersect each other or intersect the same pages. Additionally it can not utilize the fact that
depending on the space partitioning disjoint query boxes may intersect the same regions.

PROBLEMS

The normal range query algorithms are only designed for processing one query box, therefore
the following two major problems occur when sequentially processing a set of query boxes.

The first problem are out afrder page accesse$he algorithm knows nothing about a set of
query boxes, because it processes the query boxes sequentially. Therefore, it is not guaranteed
that the regions intersected by the query box set are accessed in address order. However, to
gain optimal benefit from inter page clustering they should be processed in address order.

The second and most important problem @aneecessary page accesské$wo or more query

boxes intersect the same region, the corresponding page must be retrieved multiple times. Of
course a cache can improve successive fetching of the same pages, but eventually pages are
removed from the cache before they could be accessed again. Without a cache there is conse-
quently no solution to that problem.

Figure 1 visualizes examples for out of order page accesses and unnecessary page accesses for
a planar UB—Tree. The numbers in the figures show the order in which the pages are accessed
for sequential processing of a query box set. The symlybb¬es a parallel processing

page which are intersected by multiple query boxes and therefore avoids multiple fetching of a
page from secondary storage.

3 1115
1113
4
2114116
2 5 L
a) Out of order page accesses b) Unnecessary page accesses

Figure 1: Example of unwanted page accesses

I
]

I

|

@)
w
o L
o
3

4

.

a) —e h) C)

d) - ©)
Figure 2: Example transformation of intervals / query box set

\

In Figure 1a) the order of the page accesses should be rearrangigd] 492, 5 resulting in
four region accesses and in Figure 1b) the page accesses can be reduced to two by a rearranged
page access order ofi3||1, 2||4]|6.

SEQUENTIAL PROCESSING

For one dimensional index structures a special range query algorithm for a set of query boxes
IS not necessary. In fact, the set of query boxes is a set of intervals, which must be sorted
and transformed to a set of non intersecting intervals. This is done by testing whether two
consecutive intervals intersect. If they do, one of them is enlarged and the other one deleted.
The new set of intervals becomes always smaller or equal to the original and can be processed
sequentially without performance loss, because a page intersected by two consecutive intervals
remains in the cache, since it is the last page intersected by the current interval and the first
page intersected by the next interval.

Regarding multidimensional index structures it is much more complicated, because each query
box must be tested for an intersection with all of the others. If two query boxes intersect, the
worst case is that both have to be modified and a new query box has to be added. However, the
intersection is just one problem, since non intersecting query boxes may not read the regions in
address order and pages intersected by two or more query boxes may not stay in the cache until
the consecutive query boxes are finally processed. The latter can only be solved by further
splitting of the query boxes according to the space partitioning, but this will already require
index accesses to get information about the partitioning.

Altogether it can be concluded, that in the worst case the set of intervals in the one dimensional
case remains the same, however for the multidimensional case the set of query boxes may
obviously grow, if it has to be transformed for sequential processing.

Figure 2 shows these processes for the one dimensional case where a set of four intervals is
reduced to two intervals and in the planar case where the set of four query boxes is transformed
to a new set of eight query boxes. The resulting query boxes are numbered in access order.
Regions are separated boxes and the regions intersected by more than one interval / query box
are shaded grey. In the planar case all the regions have the same size, they are sub cubes
numbered according to the Z—Order.

Figures 2 a) to b) demonstrate for the one dimensional case how an enclosed interval can be
omitted and how overlapping intervals can be merged by enlarging one of them and deleting
the other.

Figures 2 c) to e) show the MD case. One can see that a query box enclosed in another one
is simply omitted, however two intersecting query boxes are transformed to three new query

boxes. These four new non intersecting query boxes have to be split further into eight query
boxes, if all the intersected regions should be read in address order.

AT ONCE PROCESSING

The main idea of the enhanced range query algorithmis to save the address of the currently pro-
cessed region for each query box in a list of addregseghese addresses identify the regions

that will be processed for the corresponding query boxes. At the beginning, the addresses are
set to the address of the region where the starting point of the corresponding query box is lo-
cated.A is sorted in address order and next the first address is processed. If the corresponding
page is equal to the last retrieved page, it can be reused from an internal cache, otherwise the
page belonging to this region is retrieved. Now the tuples of this page inside of the query box
are moved to the result set. If the region address is equal to the last region intersected by the
qguery box, the first item ofl is removed. The algorithm stops whdns empty. After that the
address of the consecutive intersection point is calculated for the first itdmlithis address

is smaller than the last calculated address, then this point is located in the last retrieved page,
since all regions before are already processed. Otherwise it is located in a new region and its
address will be computed. This region address is saved in the first eleménSoabsequently

A is sorted again and one continues with the first addres$ afid the corresponding query

box. Actually no sorting is necessary as long as the first address is smaller than the second
or only the first one is left. Otherwise the sorting is(@flog, |A|) complexity, since the first
element ofA is only moved to its right place and this is of logarithmic complexity, if the new
position is calculated with a binary searchis organized as heap.

The complexity of the algorithm has to be viewed from two different points. On the one hand it
requires a little bit more CPU time (for initialization and comparisons) and some more memory
to store the whole query box set at once, but they are logarithmic and linear to the number of
guery boxes. On the other hand it can avoid a lot of multiple and out of order page accesses,
which take most of the time for query processing.

The algorithm has the following properties:

1. The complexity of the algorithm only depends on the number of intersected regions and
therefore on the size of the result set. In other words only pages that can contain tuples
of the result set should be fetched.

2. The regions intersected by the query boxes are fetched in address order. This ensures
optimal benefit from inter page clustering which is utilized by pre-fetching.

3. Pages are only once retrieved from the storage system. If multiple query boxes intersect
the same page, the extraction of tuples matching those query boxes is done together.

4. The algorithm provides a tuple stream. This reduces memory consumption on the side
of the DBMS and avoids performance drops since no swapping can occur.

MEASUREMENTS

The new algorithm is especially useful for a set of query boxes approximating a non rectangular
volume, because where query boxes join, they almost ever intersect pages multiple times (just
if two query boxes join exactly at the boundary of two regions, they do not intersect pages mul-
tiple times). Strategies for approximation are not discussed, because the presented algorithm is
for the efficient processing of a set of query boxes and not the approximation.

A planar UB—Tree with uniform data distribution was used for this measurement and no cache

invalidation was performed before processing the range query. The range query was a triangle,
approximated with query boxes. In the first step a bounding box was used and in the next steps
it was recursively separated into a better approximation like illustrated in Figure 3.

|
a) The range query b) Second approximation ¢) Third approximation

Figure 3. Approximation of a non rectangular volume

Figure 4a) shows the number of loaded pages according to the number of query boxes used for
the approximation. For the case of the new algorithm the first four approximation steps reduce
the number of loaded pages from 896 to 518 requiring 31 query boxes. In the case of sequential
processing the number of intersected pages is reduced in the same way, but the multiple page
intersections are working against this reduction and result in a quickly increase of the loaded
pages after the third approximation step.

a) Decreasing page accesses b) Time improvement

1100 .
new agorithm —— total time for new algorithm ——
% o, e cpu time for new algorithm -+
Q @ 15 | timefor sequential processing = 1
g 900 ¢ § i
S 800 L
8 Th |
2 600 |
0

500

1531 63 127 255 1531 63 127 255
Number of query boxes Number of query boxes

Figure 4. Measurement for the approximation of a non rectangular volume

Figure 4b) depicts how page accesses are directly reflected in the total time for a query and
how little the CPU time contributes to the total time. We can see that the minimum time for the
range query is reached with a approximation of 63 query boxes in the fifth approximation step.
At this step the query boxes get smaller than the regions of the UB—Tree and only a few more
page accesses can be saved. They require a lot of new query boxes for the approximation and
therefore the overhead for the query box set handling produces a gradual rise of the time with
further approximation. The time for sequential processing also declines in the first two steps,
but then the overhead for loading pages multiple times produces a gradual rise, which would
be even worse without caching.

SUMMARY

The presented algorithm for a set of query boxes avoids multiple accesses to pages and allows
a processing of the pages in the order of the used space filling curve. This allows the process-
ing of a query box set without the need for caching multiple accessed pages. Especially the

processing of a query box set specifying a non rectangular volume can be improved to a large
extend, since approximation naturally leads to multiple intersected pages while reducing the
number of pages to load. In the worst case the performance of processing a set of query boxes
with the new algorithm is equal to sequential processing. Additional performance improve-
ments can be achieved for databases with inter page clustering, because all pages intersected
by the set of query boxes are fetched in the order as they are stored on disk.

REFERENCES

Bayer, R. and E. McCreight (1972); Organization and Maintainance of large ordered Indexes.
Acta Informatica 1 (pp. 173-189)

Bayer, R. (1996); The universal B—Tree for multidimensional Indexing. Technical Report
TUM-19637, Institut fir Informatik, TU Minchen

Bayer, R. (1997); The universal B-Tree for multidimensional Indexing: General Concepts.
World-Wide Computing and its Applications '97 (WWCA '97), Tsukuba, Japan, 10-11, Lec-
ture Notes on Computer Science, Springer Verlag

Beckmann, N., Kriegel, H.-P., Schneider, R. and B. Seeger (1990); THE€&e. An efficient
and robust Access Method for Points and Rectangles. Proc. ACM SIGMOD Conf. (pp.322-
331)

Gaede, V. and O. @iter (1997); Multidimensional Access Methods. ACM Computing Survey
30(2)

Jagadish, H.V. (1990); Linear Clustering of Objects with multiple Attributes. Proc. of ACM
SIGMOD Conf. (pp. 332-342)

Lomet, D. and B. Salzberg (1990); The hB-Tree: A Multiattribute Indexing Method with good
guaranteed Performance. ACM TODS, 15(4) (pp. 625-658)

Markl, V., Zirkel, M. and R. Bayer (1999); Processing Operations with Restrictions in Rela-
tional Database Management Systems without external Sorting. Proc. of ICDE Conf., Sydney,
Australia

Nievergelt, J., Hinterberger, H. and K.C. Sevcik (1984); The Grid—File. ACM TODS 9(1) (pp.
38-71)

Orenstein, J.A. and T.H. Merret (1984); A Class of Data Structures for Associate Searching.
Proc. of ACM SIGMOD-PODS Conf., Portland, Oregon (pp. 294-305)

Sellis, T., Roussopoulos, N. and C. Faloutsos (1987); The R+-Tree: A Dynamic Index for
Multi-Dimensional Objects. Proc. dB8" VLDB Conf., Brighton, England (pp. 507-518)

