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Abstract: Object-oriented Database Systems 
offer certain advantages over Deductive 
Database Systems by providing techniques for 
dealing with complex objects and hierarchies 
of object classes. Often, however, such 
systems fall back onto procedural or even 
navigational techniques for querying and 
manipulating object bases. The prime goal of 
the MOOD project is to integrate concepts of 
Object-oriented and Deductive Databases by: 
- providing powerful knowledge modelling 

techniques via class hierarchies of complex 
objects 

- dealing with objectbases primarily in a 
nonprocedural, declarative way 

- handling large objectbases efficiently 
The talk covers the essential concepts of the 
MOOD project and the overall architecture of 
the MOOD system. A modelling example from 
automobile logistics is discussed in some 
detail, which requires both object-oriented 
and deductive specification techniques. The 

paper also describes the implementation 
technology based on the Deductive Database 
System LOLA and a parallel version of the 
Relational Database System TransBase. 

1. Introduction 

Various manifestoes [2, 31 and position papers 
[I, 51 have been launched to spell out the re- 

quirements for and the benefits offered by the 
next generation of database systems. Some of 
these papers sound like promising every- thing 
to everybody, but little is said how to fulfill 
all these promises. 
Well in advance of the arrival of the mani- 
festoes the MOOD-project was already on the 
way as a serious effort to achieve a fair 
number of goals projected by the manifesto- 
visionaries into the future. 
Attempting to achieve so many goals in a 
single system may seem unrealistic, 
especially if that system, like MOOD, is being 
built in an academic environment. Our 
experience shows, however, that this is 
possible and that the key to success lies in 
exploiting carefully designed and matured 
database systems of previous generations as 
subsystems. Such previous systems are in 
particular distributed relational database 
systems, deductive database systems, fulltext 
database systems and image handling systems. 
There are, however, two prerequisites for the 
successful integration of such subsystems: 
- the subsystem must be open and expose the 

important internal interfaces, like optimi- 
zation passes of SQL and logic language 
compilers, the resulting operator trees of an 
extended relational algebra and the two- 
phase commit protocol of a relational data- 
base system [9]. 

- the subsystems must have a very clean and 
fine structured modular design in order to 
be able to explore several architectural 
variants in an easy and flexible way. 
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2. The MOOD-Architecture 

The MOOD-Architecture is shown in Fig. 2.1 
together with some applications which are 
presently being developped on top of MOOD. It 
relies heavily on the high performance, 
distributed relational database system Trans- 
BaseTM. TransBase is an open system exposing 
several interfaces like SQL, Operator-Trees, 
B-Trees, prepare-state of the two-phase 
commit protocol. In addition, a massively 
parallel version of TransBase will be available 
in the future in order to cope with potential 
performance bottlenecks. For details see 
section 5. 
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On top of TransBase we built the Deductive 
Database System LOLA [6], which is also being 

presented at this conference. For the purpose 
of rapid prototyping LOLA was written in LISP. 
LOLA has an extended relational algebra 
runtime system RLISP and a high performance 
connection to TransBase. Thus LOLA can 
exploit TransBase as a workhorse to store and 
to process massive data efficiently. In 
addition LOLA utilizes the special iteration 
and transitive closure operators of TransBase 
to process recursive queries efficiently. LOLA 
also relies on TransBase for storing logic 
programs, optimized queries - which tend to 
become extremely large - the facts of LOLA 
programs and stored intermediate results - in 
parti- cular for common subexpressions - in a 
secure, reliable and crashproof way. 

LOLA also relies on TransBase to provide the 
multiuser capability via the classical ACID 
transaction concept. Future versions of MOOD 
and LOLA resp. will provide more general 
transaction concepts [9], which are presently 
under investigation. Through LOLA, MOOD can 
benefit from all the optimization techniques 
of logic programming, e.g. A-iteration [lo] and 
magic sets [12] and further advances in logic 
programming. 

On top of LOLA finally an object-oriented layer 
completes the MOOD- system. This layer 
introduces class-hierarchies, object-identity, 
multiple inheritance, lazy evaluation and many 
of the other properties postulated e.g. by the 
00-DBS manifesto [3] and 3rd-generation- DBS 
manifesto [2]. 

Object-orientation, however, is just a parti- 
cular way of looking at problems, it does not 
really solve any problems yet. Treating texts 
as objects e.g. does not solve the problem of 
searching large textbases quickly according to 
general patterns. For this reason we are 
integrating powerful, specialized subsystems 
like the fulltext Database System MYRIADT M 

PI, which can archive texts and perform a 
fulltext search on a Gigabyte of text in less 
than 5 seconds according to very general text 
patterns and phrase structures. 
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Similarly, we are integrating a specialized 
image-subsystem, which can compress raster 
images, store them in TransBase, retrieve 
them and decompress them. Fig. 2.2 gives 
performance data of our image system for a 
representative set of images. This system 
utilizes new image representation techniques 
and new compression and decompression 
algorithms. The performance data are based on 
very high level implementations of the 
algorithms. The compression ratios are 
representative for pages of technical 
documents containing arbitrary mixtures of 
printed text and graphical material like 
figures and charts. Decompression time is 
faster than the compression time by roughly 
the compression factor, i.e. it takes about 0.1 
seconds or less. At this point the retrieval 
time for an image from the database and the 
CPU-time needed for compression or 
decompression are well balanced on a SUN4 
providing subsecond response times. 

One of the central capabilities of MOOD is 
logical deduction over an object-oriented 
database. Chapter 3 will demonstrate this 
need using a specific practical modelling 
example. Object-oriented databases for 
practical applications tend to grow very large 
and therefore the typical navigational 
interface of object-oriented systems is rather 
useless. Set-oriented processing in the style 
of relational systems using a logic based 
query language is an absolute must. The 
syntactic form of such a language - more like 
SQL or more like Horn-Clauses - is a question 
of taste and of the targeted users. We are 
presently still experimenting with several 
syntactic variants of the query language. 

Object-oriented deduction needs techniques, 
which are similar, but much more general than 
the techniques used in Deductive Database 
Systems: The role of logic variables is taken 
over by classes, the range of variables is no 
longer the whole term-universe, but the 
subclasses and the instances of the class 
replacing the logic variable. Term unification 

must be generalized substantially to take into 
account the constraints of the class 
hierarchies. For more details see chapter 4. 

LOLA prepared the ground for object-oriented 
deduction by introducing a flat type system 
[l l] and by developing fast unification 
algorithms for unifying large sets of terms. 
This problem arises in large deductive 
databases, if the deduction rules require joins 
over relations (real or virtual) with 
term-valued attributes and complex join 
conditions. 

All these developments and integrated 
subsystems led to the object-oriented and 
deductive interface of MOOD, which is 
presently being used to develop a number of 
ambitions applications: 

knowledge-based logistics system for the 
automobile industry 
intelligent CASE-database system for 
migrating software from the mainframe to 
the UNIX world. 
expert system for representing and 
acquiring knowledge about illnesses in the 
throat, nose, ear area and for using that 
knowledge for diagnostic purposes. 

TM: TransBase and MYRIAD are trademarks of TransAction 
Software GmbH, Munich 

3. Modelling Applications with MOOD 

In this section we present a highly simplified 
example of modelling with MOOD. The example 
is taken from the automobile-logistics 
problem and models engines, bodies and 
assembly procedures of BMW cars. We start 
with three class hierarchies, which are pure 
tree-structured taxonomies. 

MOTOR to classify BMW engines, Fig. 3.1 
KAROSSE to classify BMW bodies, Fig. 3.2 
BasisBMW to classify all models of BMW 
cars, Fig. 3.3 
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In reality, the objects in those classes have a 
very complex structure, of course. We will 
investigate this structure in some more detail 
for the class BasisBMW, assuming for the 
moment that cars are simply assembled from 
engines and bodies. 

,- _ 

3.1 Refinement of Class Hierarchy and 
Multiple Inheritance 

At this point the hierarchies become 
intertwined in a very complex way. This 
reflects the observation, that certain 
standardized subsystems are used within 
several other systems, e.g. a variety of 
BMW-engines is used to make both the BMW3 
series and the BMW5 series. 

To reflect this situation we must refine the 
engine hierarchy MOTOR by introducing the 
engine classes M3, M5, M7 which are used to 
build the series BMW3, BMW5, BMW7, Fig. 3.4. 

Observe that we suddenly no longer have a 
tree-structured taxonomy of engines, but a 
complicated system of overlapping classes. To 
specify such a system requires the concept of 
multiple inheritance. Some object-oriented 
languages exclude multiple inheritance for 
reasons of simplicity. This, however, severely 
limits the modelling power of such languages, 
particularly for technical applications. For 
these and several other reasons, MOOD 
supports multiple inheritance. 

3.2 Complex Objects 

Now the three hierarchies must be joined 
properly to define the detailed structure of 
the cars in the classes BMW3, BMWS, BMW7. 
The result is Fig. 3.5. This figure shows two 
kinds of edges: thin edges depict the 
isa-hierarchy of classes and subclasses, bold 
edges depict the part-of relationship between 
classes. If the classes used in the structure 
definition are shown in more detail, a very 
complex picture arises. Fig. 3.6 shows only the 
subpicture related to the definition of the 

class BMW3. The interested reader is invited 
to complete this picture by overlaying all the 
complete classes involved. 

3.3 Class Specification by Predicates 

Even this extremely simplified example shows 
clearly, that a purely object-oriented approach 
to modelling becomes unmanageable very 
quickly. Creating all the resulting classes and 
edges explicitely and drawing them by hand (or 
mouse clicks) becomes cumbersome and 
errorprone, the result is confusing and hard to 
understand. For these reasons, MOOD 
integrates the object-oriented paradigm with 
the logic programming paradigm. This allows 
also a set oriented approach to specification, 
using predicates (or rules) over already 
existing classes to define the new classes M3, 
M5, M7. 

M3 is specified by the predicate condition 
MOTOR.ccm < 2500 within the construct: 

(create-class :class-name ‘M3 
:general-list ‘(MOTOR) 
:special-list (condition ‘MOTOR.ccm 52500)). 

Observe that this predicate is satisfied by the 
classes DIESEL, 42 and by the instances B2000 
and B2500 within the class 6Z. 

The classes M5 and M7 can be defined 
analogously. Here MOTOR.ccm plays the role of 
a logic variable, whose range is the 
ccm-attribute of all subclasses and instances 
in the class MOTOR. This example was chosen 
to demonstrate two principles of MOOD: 
- MOOD gives the most general possible 

answers to predicate-queries, e.g. 42 
instead of the set of instances 
(B1600, B1800) of 42. 

- MOOD completes the class hierarchy auto- 
matically and therefore MOOD can draw the 
class-nodes and the edges if the user wants 
to have them visualized graphically as in 
Fig. 3.5. 
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3.4 Classes as Views and Expressions 

Here M3, M5, M7 are created as named classes 
which are then generally available and can be 
used for further definitions. There are obvious 
similarities to the definition of views in 
relational database systems, and one might 
call named classes also class-views as 
generalizations of relation-views. 

To avoid explicite naming MOOD allows class 
exoressions in addition to named classes in 
specifying further classes. The class BMW3 
could also be introduced without the 
named-class M3 as follows: 

(create-class 
:class-name ‘BMW3 
:general-list ‘(BasisBMW)) 

(create-structure 
(list (create-class 

:general-list ‘(MOTOR) 
:special-list (condition ‘MOTOR.ccm12500)) 
‘K3) ‘BMWS) 

Introducing classes (named or unnamed) which 
are only needed for the definition of other 
classes may lead to an excessive number of 

classes and may clutter the class hierarchy. 
Therefore MOOD allows general structure 
conditions in the specification of classes with 
the goal to avoid classes like M3, M5, M7, K3, 
K5, K7 altogether. Thus, one obtains a much 
simpler and clearer class-hierarchy and 
part-of structure as in Fig. 3.7. 

1 fBMW7 
7 

MOTOR.ccm~3000 
and KAROSSE in K7 

I 

MOTOR.ccm I2500 
and KAROSSEBez 

Fig. 3.7 

BMW5 
MOTOR.ccm>2000 
and MOTOR.ccm13500 
and KAROSSE.Bez=‘NS 

In this figure we used a mixture of graphical 
and predicate specification. A purely textual 
MOOD specification of the class BMW3 is: 

(create-class 
:class-name ‘BMW3 
:general-list ‘(BasisBMW) 
:structure condition ‘MOTORccm I 2500 and 

KAROSSE.Bez = ‘N3) 

Note that BMW3 inherits the structure- 
components MOTOR and KAROSSE from its 
general class BasisBMW and therefore the 
attributes MOTORccm and KAROSSE.Bez can be 
used for formulating the predicate specifying 
the subclasses of MOTOR and KAROSSE resp. 

3.5 Inheritance of Predicates 

We now want to make our example slightly 
more complicated and also model the assembly 
procedure. Our simple assumption is that a 
class MONTAGE of assembly procedures is 
already defined which only depend on the 
number of cylinders (attribute AnzZyl) of the 
engine to be assembled with the body. 

This adds the structural component MONTAGE 
to the definition of BasisBMW. It also adds the 
condition 

MOTOR.AnzZyl = MONTAGE.AnzZyl 
to the definition of BMW3, BMW5, BMW7 to 
make sure, that the proper assembly procedure 
is used in making cars. 

Observe now, that this condition is exactly the 
same for BMW3, BMWS, BMW7 (and indeed for 
all conceivable cars) and therefore should be 
specified at the more abstract level of the 
class BasisBMW. It then should be inherited 
automatically by the special classes. This 
would result in the specification of Fig. 3.8, in 
which we used a semi-graphical technique. The 
reader is invited to try this specification in a 
pure object-oriented technique without taking 
recourse to predicates and logic programming. 
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The simple example just shown is a 
demonstration of the general phenomenon, that 
the inheritance of restriction predicates is an 
important and widespred principle in 
object-oriented modelling. 
Primarily, however, the examples in this 
chapter demonstrate clearly, that a careful 
integration of object-oriented specification 
with logic programming is necessary in order to 
provide the modelling power that is needed for 
advanced, realistic applications. 

tuples that presently make up the relation R. 
Formally this is not very clean, but it is 
convenient and seems to correspond well to 
natural thinking and language. Thus, in MOOD 
class names play the role of logic variables in 
predicates, rules, 
answers to queries. 

4.2 Most General 

open facts, queries and 

Class Names and Unifiers 

should be the most general Answers to queries 
answers that can be given within the defined 
class hierarchies. In our previous example the 
answer to the query 

condition MOTOR.ccm 4 2500 
should be the set 

{DIESEL, 42, B2000, 92500 1. 
Giving an answer 

(DIESEL, 81600, B 1800, B2000, B2500} 
in which the class 42 is replaced by its 
extension, could also be considered as a correct 
answer, but it is not an answer which the user 
expects. Giving sets of most general classes as 
answers corresponds to giving the most general 
unifiers (mgu) as answers in logic programs. 
Therefore the well established concept of mgu 
must be generalized considerably for 
object-oriented deduction. 

4. Object-Oriented Deduction 
4.3 Terms 

Object-oriented deduction (OOD) has, of course, 
very deep similarities with ordinary deduction 
of logic programming. In this section we will 
briefly discuss some aspects which are 
different from conventional logic programming. 

4.1 Variables and Class Names 

Let us reconsider the simple predicate 
MOTOR.ccm I 2500 used in the definition of the 
classes BMW3 and M3 in chapter 3. We actually 
used the class-name MOTOR like a logic 
variable, whose range are all the subclasses 
and instances within the MOTOR hierarchy but 
not the whole universe of discourse. This 
resembles the usage of a relation name R as a 
tuple variable and simultaneously as a 
range-restriction for that tuple variable to the 

Terms are formed using constants, class names 
as variables with selectors for the components 
of classes of structured objects, like 
MOTOR.AnzZyl or MOTOR.ccm. Terms are 
recursively combined to form more complex 
terms as usual. In MOOD terms are evaluated 
like in the join predicate 

MOTOR.AnzZyl = MONTAGE.AnzZyl 

used in the previous section. Since we are 
dealing with classes of complex structure, the 
terms can become very complicated, too. 

4.4 Indexes 

Accessing and joining large classes of 
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structured objects via general join conditions 
leads to complicated and compute-intensive 
algorithms. To lower the complexity of such 
algorithms clever indexing techniques are 
needed. Some work has been done to build tree 
structured indexes for large sets of complex 
terms as they arise in theorem proving. 
Generalizations of such indexing techniques 
are still needed to be usable for class 
hierarchies of structured objects. 

4.5 Object-oriented Deduction and Join 
Algorithms 

Many algorithms have been developed for 
joining flat relations. OOD immediately leads 
to the problem of joining class hierarchies, 
but little is known about algorithms for 
solving this problem efficiently. 

A special subproblem of join-algorithms is 
efficient class-unification for large sets of 
terms involving structured objects. 

4.6 Query-Optimization 

In this paper we used predicates only for the 
specification of the class hierarchy, i.e. as 
part of the DDL-equivalent of a relational 
database system. Predicates play an even more 
important role in the query language and in the 
object-manipulation language. Independently 
of the syntactic form of the query language - 
more like SQL or more like Horn-clauses - 
query optimization is an important issue. 

Due to its clear layered architecture MOOD 
benefits automatically from the present query 
optimization in LOLA and TransBase and from 
future improvements in those subsystems. 
Query optimization must be particularly 
effective for recursive predicates, since they 
arise naturally in object-oriented systems, 
the most obvious being inheritance rules like: 
Has Attribute (Cl,A) t Isa (Cl ,C2) 

Has Attribute (C2,A) 
to describe inheritance of attribute A from 
class C2 to subclass Cl or: 

HasValue (Cl ,A,V) c Isa (Cl,C2) 
HasValue (C2,A,V) 

to describe the inheritance of value V for 
attribute A from class C2 to the subclass Cl. 

Another recursive problem is parts-explosion 
which is typical for the kind of applications 
modelled in chapter 3 of this paper. 

Therefore optimization techniques for 

recursive logic programs like A-iteration [12] 
and magic sets [lo], which are built into LOLA, 
are essential. But in addition powerful 
optimization techniques including meta-level 
semantic optimization [15] is needed for the 
object-oriented layer of MOOD. This is an area 
of active research. 

5. Parallel Database Support for MOOD 

Database applications tend to evolve to 
surprisingly complex schemata and queries. 
This happens even in simple applications if 
excessive use is made of the pure norma- 
lization theory. Queries involving 10 to 15 
joins are not unusual [13]. This phenomenon 
becomes even more severe with added 
logic-programming or object-oriented 
abstraction layers and interfaces. It is not at 
all unusual, to observe operator trees with 
500 to 1000 operator-nodes (at the database 
or RLISP levels of our system) for ambitious 
applications like AMOS [14], an expert system 
for the analysis of ancient Hebrew language. 
With the addition of the MOOD layer we expect 
to see even more complex operator trees. 

Such applications open the perspective for 
massive parallelism. For this reason a 
research and development project was started 
in 1990 (founded by Deutsche Forschungs- 
gemeinschaft DFG) to investigate massively 
parallel database systems, using TransBase as 
a research vehicle. In this project at least five 
(according to recent plans) orthogonal methods 
will be exploited to arrive at a massively 
parallel database system. 



5.1 Replicated TransBase Kernels 5.3 Parallel Query Execution 

TransBase is a highly modular distributed 
database system designed for many TransBase 
kernels to work in parallel on a database, 
which is distributed over a loosely coupled 
network of workstations. If these kernels run 
on a system of tightly coupled multi- 
processors, their performance is much better. 
The TransBase database-cache architecture is 
ideally suited to work well even on multi- 
processors without a common main memory: 
Each kernel has a local cache for storing data 
needed for query-processing; there is a global 
cache which is only used for sharing common 
data, in order to minimize access conflicts. 

Kernel replication seems to emerge as the 
standard and fairly straight-forward tech- 
nique for other commercial database systems 
to run on tightly coupled multiprocessors. As 
opposed to multiplexing one processor 
between several transactions, this technique 
provides truely parallel execution of as many 
transactions as there are processors available. 
It does not speed up the processing of a single 
complex query, however. 

5.2 Partitioning of the TransBase Kernel 

Since TransBase is a highly modular system, 
its kernel can be partitioned into several 
processes. Candidates for such processes are 
the SQL-translator, several passes of the 
query-optimizer, several low-level modules 
like the B-tree manager and the segment 
manager, the log-manager, the lock-manager 
and the operator-tree interpreter. There are, 
of course, many challenging technical 
problems like sharing of information, 
high-performance communication protocols, 
synchronization and coordination of processes 
which are beyond the scope of this paper. 
From kernel-partitioning we expect to gain 
about an order of magnitude increase of the 
number of processes that can run in parallel. 

As explained before, we expect to see very 
large operator trees in MOOD. These trees have 
the potential for massively parallel inter- 
pretation, especially since the operators of 
TransBase are rather fine-grained, resulting in 
about 80 different, highly specialized and 
therefore rather small operators, most of 
them having less than 10 KB of code. 
One clearly advantageous property of operator 
trees is the fact that every mode must 
communicate with only a few neighbours. The 
communication topology is fixed and known in 
advance after the query optimization phase. 
Even the structure of the data to be 
communicated is known. This opens up many 
optimization and load-balancing possibilities 
at the interprocess communication level. It is 
clear that query-optimization and communi- 
cation-optimization are not independent and 
cause challenging research questions. 
In many cases. especially in the near future, 
there will be not nearly as many processors in 
a typical workstation or server as there are 
potential processes resulting from a large 
operator tree. Therefore an important question 
is how to cut an operator tree into subtrees to 
be made into processes. Again, this problem is 
not independent of the classical query- 
optimization in relational or deductive data- 
base systems. 

5.4. Intra-Operator Parallelism 

Some operators needed in an extended 
relational algebra for a logic programming 
system are quite compute intensive. Our 
preliminary analysis indicates that they will 
require at least 500 MIPS to keep up in real 
time with the data stream delivered by a 
single Winchester disk, if it is driven by a 
raw-l/O file system. Such operators are prime 
candidates to be parallelized themselves, 
since 500 MIPS will not be delivered by 
workstations for some time. 
Intra-operator parallelism can be used in 
addition to the techniques discussed before, 

328 



but from an optimization point of view it is 
not independent of these techniques. MIPS 
demands of different operators are vastly 
different. Therefore it will probably be useful 
to exploit intra-operator parallelism even 
before the potential for intra-operator 
parallelism has been exhausted. 

5.5. Database Partitioning 

For ambitious applications - like the ones 
discussed in this paper - database and logic 
programming systems become heaviliy 
CPU-bound. But with increasing processor- 
speed and massive parallelism, an I/O 
bottleneck must be reached, of course. At this 
point partitioning a database across several 
disks becomes the obvious next step to 
improve performance and to hand the neck of 
the bottle back to the processors. The 
question, how to partition a database and how 
to distribute the partitions across a collection 
of disks in the context of massive parallelism 
is difficult. It depends - of course - on the 
population and dynamics of the queries to be 
posed in a particular application, and 
therefore we have again a fascinating 
optimization problem. But it will not be until 
sometime in the future that we have to face 
this problem. 
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