
MOOD: A Knowledgebase System with
Objectoriented Deduction

Rudolf BAYER
Bayerisches Forschungszentrum fiir Wissensbasierte Systeme

(FORWISS)
lnstitut fijr Informatik, Technische Universitat Miinchen

Abstract: Object-oriented Database Systems
offer certain advantages over Deductive
Database Systems by providing techniques for
dealing with complex objects and hierarchies
of object classes. Often, however, such
systems fall back onto procedural or even
navigational techniques for querying and
manipulating object bases. The prime goal of
the MOOD project is to integrate concepts of
Object-oriented and Deductive Databases by:
- providing powerful knowledge modelling

techniques via class hierarchies of complex
objects

- dealing with objectbases primarily in a
nonprocedural, declarative way

- handling large objectbases efficiently
The talk covers the essential concepts of the
MOOD project and the overall architecture of
the MOOD system. A modelling example from
automobile logistics is discussed in some
detail, which requires both object-oriented
and deductive specification techniques. The

paper also describes the implementation
technology based on the Deductive Database
System LOLA and a parallel version of the
Relational Database System TransBase.

1. Introduction

Various manifestoes [2, 31 and position papers
[I, 51 have been launched to spell out the re-

quirements for and the benefits offered by the
next generation of database systems. Some of
these papers sound like promising every- thing
to everybody, but little is said how to fulfill
all these promises.
Well in advance of the arrival of the mani-
festoes the MOOD-project was already on the
way as a serious effort to achieve a fair
number of goals projected by the manifesto-
visionaries into the future.
Attempting to achieve so many goals in a
single system may seem unrealistic,
especially if that system, like MOOD, is being
built in an academic environment. Our
experience shows, however, that this is
possible and that the key to success lies in
exploiting carefully designed and matured
database systems of previous generations as
subsystems. Such previous systems are in
particular distributed relational database
systems, deductive database systems, fulltext
database systems and image handling systems.
There are, however, two prerequisites for the
successful integration of such subsystems:
- the subsystem must be open and expose the

important internal interfaces, like optimi-
zation passes of SQL and logic language
compilers, the resulting operator trees of an
extended relational algebra and the two-
phase commit protocol of a relational data-
base system [9].

- the subsystems must have a very clean and
fine structured modular design in order to
be able to explore several architectural
variants in an easy and flexible way.

DATABASE SYSTEMS FOR ADVANCED APPLICATIONS ‘91
Ed. A. Makinouchi
@World Scientific Publishing Co.

320

2. The MOOD-Architecture

The MOOD-Architecture is shown in Fig. 2.1
together with some applications which are
presently being developped on top of MOOD. It
relies heavily on the high performance,
distributed relational database system Trans-
BaseTM. TransBase is an open system exposing
several interfaces like SQL, Operator-Trees,
B-Trees, prepare-state of the two-phase
commit protocol. In addition, a massively
parallel version of TransBase will be available
in the future in order to cope with potential
performance bottlenecks. For details see
section 5.

I

I 1 I
object-oriented and deductive KBS

----T---

object-oriented

I
declarative deductive DBS 1

LOLA
logic programming system

RLISP

I relational algebra -

-i

dlstrlbuted, highperformance. relational DBS

TransBase

Fig. 2.1

On top of TransBase we built the Deductive
Database System LOLA [6], which is also being

presented at this conference. For the purpose
of rapid prototyping LOLA was written in LISP.
LOLA has an extended relational algebra
runtime system RLISP and a high performance
connection to TransBase. Thus LOLA can
exploit TransBase as a workhorse to store and
to process massive data efficiently. In
addition LOLA utilizes the special iteration
and transitive closure operators of TransBase
to process recursive queries efficiently. LOLA
also relies on TransBase for storing logic
programs, optimized queries - which tend to
become extremely large - the facts of LOLA
programs and stored intermediate results - in
parti- cular for common subexpressions - in a
secure, reliable and crashproof way.

LOLA also relies on TransBase to provide the
multiuser capability via the classical ACID
transaction concept. Future versions of MOOD
and LOLA resp. will provide more general
transaction concepts [9], which are presently
under investigation. Through LOLA, MOOD can
benefit from all the optimization techniques
of logic programming, e.g. A-iteration [lo] and
magic sets [12] and further advances in logic
programming.

On top of LOLA finally an object-oriented layer
completes the MOOD- system. This layer
introduces class-hierarchies, object-identity,
multiple inheritance, lazy evaluation and many
of the other properties postulated e.g. by the
00-DBS manifesto [3] and 3rd-generation- DBS
manifesto [2].

Object-orientation, however, is just a parti-
cular way of looking at problems, it does not
really solve any problems yet. Treating texts
as objects e.g. does not solve the problem of
searching large textbases quickly according to
general patterns. For this reason we are
integrating powerful, specialized subsystems
like the fulltext Database System MYRIADT M

PI, which can archive texts and perform a
fulltext search on a Gigabyte of text in less
than 5 seconds according to very general text
patterns and phrase structures.

321

Similarly, we are integrating a specialized
image-subsystem, which can compress raster
images, store them in TransBase, retrieve
them and decompress them. Fig. 2.2 gives
performance data of our image system for a
representative set of images. This system
utilizes new image representation techniques
and new compression and decompression
algorithms. The performance data are based on
very high level implementations of the
algorithms. The compression ratios are
representative for pages of technical
documents containing arbitrary mixtures of
printed text and graphical material like
figures and charts. Decompression time is
faster than the compression time by roughly
the compression factor, i.e. it takes about 0.1
seconds or less. At this point the retrieval
time for an image from the database and the
CPU-time needed for compression or
decompression are well balanced on a SUN4
providing subsecond response times.

One of the central capabilities of MOOD is
logical deduction over an object-oriented
database. Chapter 3 will demonstrate this
need using a specific practical modelling
example. Object-oriented databases for
practical applications tend to grow very large
and therefore the typical navigational
interface of object-oriented systems is rather
useless. Set-oriented processing in the style
of relational systems using a logic based
query language is an absolute must. The
syntactic form of such a language - more like
SQL or more like Horn-Clauses - is a question
of taste and of the targeted users. We are
presently still experimenting with several
syntactic variants of the query language.

Object-oriented deduction needs techniques,
which are similar, but much more general than
the techniques used in Deductive Database
Systems: The role of logic variables is taken
over by classes, the range of variables is no
longer the whole term-universe, but the
subclasses and the instances of the class
replacing the logic variable. Term unification

must be generalized substantially to take into
account the constraints of the class
hierarchies. For more details see chapter 4.

LOLA prepared the ground for object-oriented
deduction by introducing a flat type system
[l l] and by developing fast unification
algorithms for unifying large sets of terms.
This problem arises in large deductive
databases, if the deduction rules require joins
over relations (real or virtual) with
term-valued attributes and complex join
conditions.

All these developments and integrated
subsystems led to the object-oriented and
deductive interface of MOOD, which is
presently being used to develop a number of
ambitions applications:

knowledge-based logistics system for the
automobile industry
intelligent CASE-database system for
migrating software from the mainframe to
the UNIX world.
expert system for representing and
acquiring knowledge about illnesses in the
throat, nose, ear area and for using that
knowledge for diagnostic purposes.

TM: TransBase and MYRIAD are trademarks of TransAction
Software GmbH, Munich

3. Modelling Applications with MOOD

In this section we present a highly simplified
example of modelling with MOOD. The example
is taken from the automobile-logistics
problem and models engines, bodies and
assembly procedures of BMW cars. We start
with three class hierarchies, which are pure
tree-structured taxonomies.

MOTOR to classify BMW engines, Fig. 3.1
KAROSSE to classify BMW bodies, Fig. 3.2
BasisBMW to classify all models of BMW
cars, Fig. 3.3

322

Karosse \

Fig. 3.1

Fig. 3.3

/ / .

Fig. 3.5

323

Be2

I\
K3 K5 K7 ’

Bet=N3 Bez=N5

K7N K7L
Bez=N7 Bez=L7

Fig. 3.2

Fig. 3.4

Fig. 3.6

In reality, the objects in those classes have a
very complex structure, of course. We will
investigate this structure in some more detail
for the class BasisBMW, assuming for the
moment that cars are simply assembled from
engines and bodies.

,- _

3.1 Refinement of Class Hierarchy and
Multiple Inheritance

At this point the hierarchies become
intertwined in a very complex way. This
reflects the observation, that certain
standardized subsystems are used within
several other systems, e.g. a variety of
BMW-engines is used to make both the BMW3
series and the BMW5 series.

To reflect this situation we must refine the
engine hierarchy MOTOR by introducing the
engine classes M3, M5, M7 which are used to
build the series BMW3, BMW5, BMW7, Fig. 3.4.

Observe that we suddenly no longer have a
tree-structured taxonomy of engines, but a
complicated system of overlapping classes. To
specify such a system requires the concept of
multiple inheritance. Some object-oriented
languages exclude multiple inheritance for
reasons of simplicity. This, however, severely
limits the modelling power of such languages,
particularly for technical applications. For
these and several other reasons, MOOD
supports multiple inheritance.

3.2 Complex Objects

Now the three hierarchies must be joined
properly to define the detailed structure of
the cars in the classes BMW3, BMWS, BMW7.
The result is Fig. 3.5. This figure shows two
kinds of edges: thin edges depict the
isa-hierarchy of classes and subclasses, bold
edges depict the part-of relationship between
classes. If the classes used in the structure
definition are shown in more detail, a very
complex picture arises. Fig. 3.6 shows only the
subpicture related to the definition of the

class BMW3. The interested reader is invited
to complete this picture by overlaying all the
complete classes involved.

3.3 Class Specification by Predicates

Even this extremely simplified example shows
clearly, that a purely object-oriented approach
to modelling becomes unmanageable very
quickly. Creating all the resulting classes and
edges explicitely and drawing them by hand (or
mouse clicks) becomes cumbersome and
errorprone, the result is confusing and hard to
understand. For these reasons, MOOD
integrates the object-oriented paradigm with
the logic programming paradigm. This allows
also a set oriented approach to specification,
using predicates (or rules) over already
existing classes to define the new classes M3,
M5, M7.

M3 is specified by the predicate condition
MOTOR.ccm < 2500 within the construct:

(create-class :class-name ‘M3
:general-list ‘(MOTOR)
:special-list (condition ‘MOTOR.ccm 52500)).

Observe that this predicate is satisfied by the
classes DIESEL, 42 and by the instances B2000
and B2500 within the class 6Z.

The classes M5 and M7 can be defined
analogously. Here MOTOR.ccm plays the role of
a logic variable, whose range is the
ccm-attribute of all subclasses and instances
in the class MOTOR. This example was chosen
to demonstrate two principles of MOOD:
- MOOD gives the most general possible

answers to predicate-queries, e.g. 42
instead of the set of instances
(B1600, B1800) of 42.

- MOOD completes the class hierarchy auto-
matically and therefore MOOD can draw the
class-nodes and the edges if the user wants
to have them visualized graphically as in
Fig. 3.5.

324

3.4 Classes as Views and Expressions

Here M3, M5, M7 are created as named classes
which are then generally available and can be
used for further definitions. There are obvious
similarities to the definition of views in
relational database systems, and one might
call named classes also class-views as
generalizations of relation-views.

To avoid explicite naming MOOD allows class
exoressions in addition to named classes in
specifying further classes. The class BMW3
could also be introduced without the
named-class M3 as follows:

(create-class
:class-name ‘BMW3
:general-list ‘(BasisBMW))

(create-structure
(list (create-class

:general-list ‘(MOTOR)
:special-list (condition ‘MOTOR.ccm12500))
‘K3) ‘BMWS)

Introducing classes (named or unnamed) which
are only needed for the definition of other
classes may lead to an excessive number of

classes and may clutter the class hierarchy.
Therefore MOOD allows general structure
conditions in the specification of classes with
the goal to avoid classes like M3, M5, M7, K3,
K5, K7 altogether. Thus, one obtains a much
simpler and clearer class-hierarchy and
part-of structure as in Fig. 3.7.

1 fBMW7
7

MOTOR.ccm~3000
and KAROSSE in K7

I

MOTOR.ccm I2500
and KAROSSEBez

Fig. 3.7

BMW5
MOTOR.ccm>2000
and MOTOR.ccm13500
and KAROSSE.Bez=‘NS

In this figure we used a mixture of graphical
and predicate specification. A purely textual
MOOD specification of the class BMW3 is:

(create-class
:class-name ‘BMW3
:general-list ‘(BasisBMW)
:structure condition ‘MOTORccm I 2500 and

KAROSSE.Bez = ‘N3)

Note that BMW3 inherits the structure-
components MOTOR and KAROSSE from its
general class BasisBMW and therefore the
attributes MOTORccm and KAROSSE.Bez can be
used for formulating the predicate specifying
the subclasses of MOTOR and KAROSSE resp.

3.5 Inheritance of Predicates

We now want to make our example slightly
more complicated and also model the assembly
procedure. Our simple assumption is that a
class MONTAGE of assembly procedures is
already defined which only depend on the
number of cylinders (attribute AnzZyl) of the
engine to be assembled with the body.

This adds the structural component MONTAGE
to the definition of BasisBMW. It also adds the
condition

MOTOR.AnzZyl = MONTAGE.AnzZyl
to the definition of BMW3, BMW5, BMW7 to
make sure, that the proper assembly procedure
is used in making cars.

Observe now, that this condition is exactly the
same for BMW3, BMWS, BMW7 (and indeed for
all conceivable cars) and therefore should be
specified at the more abstract level of the
class BasisBMW. It then should be inherited
automatically by the special classes. This
would result in the specification of Fig. 3.8, in
which we used a semi-graphical technique. The
reader is invited to try this specification in a
pure object-oriented technique without taking
recourse to predicates and logic programming.

325

MOTOR)

\
1 MOTOR.AnzZyl 1-d KAROSSE)

MONTAGE.AnzZyl

MOTOR.ccm < 2500

II
MOTOR.ccm<3500 MOTOR.ccm23000

and KAROSSEBez and MOTOR.ccm>2000 and KAROSSE.Bez I
=‘N3 and KAROSSE.Bes’N5 = K7.Bez

Fig 3.3

The simple example just shown is a
demonstration of the general phenomenon, that
the inheritance of restriction predicates is an
important and widespred principle in
object-oriented modelling.
Primarily, however, the examples in this
chapter demonstrate clearly, that a careful
integration of object-oriented specification
with logic programming is necessary in order to
provide the modelling power that is needed for
advanced, realistic applications.

tuples that presently make up the relation R.
Formally this is not very clean, but it is
convenient and seems to correspond well to
natural thinking and language. Thus, in MOOD
class names play the role of logic variables in
predicates, rules,
answers to queries.

4.2 Most General

open facts, queries and

Class Names and Unifiers

should be the most general Answers to queries
answers that can be given within the defined
class hierarchies. In our previous example the
answer to the query

condition MOTOR.ccm 4 2500
should be the set

{DIESEL, 42, B2000, 92500 1.
Giving an answer

(DIESEL, 81600, B 1800, B2000, B2500}
in which the class 42 is replaced by its
extension, could also be considered as a correct
answer, but it is not an answer which the user
expects. Giving sets of most general classes as
answers corresponds to giving the most general
unifiers (mgu) as answers in logic programs.
Therefore the well established concept of mgu
must be generalized considerably for
object-oriented deduction.

4. Object-Oriented Deduction
4.3 Terms

Object-oriented deduction (OOD) has, of course,
very deep similarities with ordinary deduction
of logic programming. In this section we will
briefly discuss some aspects which are
different from conventional logic programming.

4.1 Variables and Class Names

Let us reconsider the simple predicate
MOTOR.ccm I 2500 used in the definition of the
classes BMW3 and M3 in chapter 3. We actually
used the class-name MOTOR like a logic
variable, whose range are all the subclasses
and instances within the MOTOR hierarchy but
not the whole universe of discourse. This
resembles the usage of a relation name R as a
tuple variable and simultaneously as a
range-restriction for that tuple variable to the

Terms are formed using constants, class names
as variables with selectors for the components
of classes of structured objects, like
MOTOR.AnzZyl or MOTOR.ccm. Terms are
recursively combined to form more complex
terms as usual. In MOOD terms are evaluated
like in the join predicate

MOTOR.AnzZyl = MONTAGE.AnzZyl

used in the previous section. Since we are
dealing with classes of complex structure, the
terms can become very complicated, too.

4.4 Indexes

Accessing and joining large classes of

326.

structured objects via general join conditions
leads to complicated and compute-intensive
algorithms. To lower the complexity of such
algorithms clever indexing techniques are
needed. Some work has been done to build tree
structured indexes for large sets of complex
terms as they arise in theorem proving.
Generalizations of such indexing techniques
are still needed to be usable for class
hierarchies of structured objects.

4.5 Object-oriented Deduction and Join
Algorithms

Many algorithms have been developed for
joining flat relations. OOD immediately leads
to the problem of joining class hierarchies,
but little is known about algorithms for
solving this problem efficiently.

A special subproblem of join-algorithms is
efficient class-unification for large sets of
terms involving structured objects.

4.6 Query-Optimization

In this paper we used predicates only for the
specification of the class hierarchy, i.e. as
part of the DDL-equivalent of a relational
database system. Predicates play an even more
important role in the query language and in the
object-manipulation language. Independently
of the syntactic form of the query language -
more like SQL or more like Horn-clauses -
query optimization is an important issue.

Due to its clear layered architecture MOOD
benefits automatically from the present query
optimization in LOLA and TransBase and from
future improvements in those subsystems.
Query optimization must be particularly
effective for recursive predicates, since they
arise naturally in object-oriented systems,
the most obvious being inheritance rules like:
Has Attribute (Cl,A) t Isa (Cl ,C2)

Has Attribute (C2,A)
to describe inheritance of attribute A from
class C2 to subclass Cl or:

HasValue (Cl ,A,V) c Isa (Cl,C2)
HasValue (C2,A,V)

to describe the inheritance of value V for
attribute A from class C2 to the subclass Cl.

Another recursive problem is parts-explosion
which is typical for the kind of applications
modelled in chapter 3 of this paper.

Therefore optimization techniques for

recursive logic programs like A-iteration [12]
and magic sets [lo], which are built into LOLA,
are essential. But in addition powerful
optimization techniques including meta-level
semantic optimization [15] is needed for the
object-oriented layer of MOOD. This is an area
of active research.

5. Parallel Database Support for MOOD

Database applications tend to evolve to
surprisingly complex schemata and queries.
This happens even in simple applications if
excessive use is made of the pure norma-
lization theory. Queries involving 10 to 15
joins are not unusual [13]. This phenomenon
becomes even more severe with added
logic-programming or object-oriented
abstraction layers and interfaces. It is not at
all unusual, to observe operator trees with
500 to 1000 operator-nodes (at the database
or RLISP levels of our system) for ambitious
applications like AMOS [14], an expert system
for the analysis of ancient Hebrew language.
With the addition of the MOOD layer we expect
to see even more complex operator trees.

Such applications open the perspective for
massive parallelism. For this reason a
research and development project was started
in 1990 (founded by Deutsche Forschungs-
gemeinschaft DFG) to investigate massively
parallel database systems, using TransBase as
a research vehicle. In this project at least five
(according to recent plans) orthogonal methods
will be exploited to arrive at a massively
parallel database system.

5.1 Replicated TransBase Kernels 5.3 Parallel Query Execution

TransBase is a highly modular distributed
database system designed for many TransBase
kernels to work in parallel on a database,
which is distributed over a loosely coupled
network of workstations. If these kernels run
on a system of tightly coupled multi-
processors, their performance is much better.
The TransBase database-cache architecture is
ideally suited to work well even on multi-
processors without a common main memory:
Each kernel has a local cache for storing data
needed for query-processing; there is a global
cache which is only used for sharing common
data, in order to minimize access conflicts.

Kernel replication seems to emerge as the
standard and fairly straight-forward tech-
nique for other commercial database systems
to run on tightly coupled multiprocessors. As
opposed to multiplexing one processor
between several transactions, this technique
provides truely parallel execution of as many
transactions as there are processors available.
It does not speed up the processing of a single
complex query, however.

5.2 Partitioning of the TransBase Kernel

Since TransBase is a highly modular system,
its kernel can be partitioned into several
processes. Candidates for such processes are
the SQL-translator, several passes of the
query-optimizer, several low-level modules
like the B-tree manager and the segment
manager, the log-manager, the lock-manager
and the operator-tree interpreter. There are,
of course, many challenging technical
problems like sharing of information,
high-performance communication protocols,
synchronization and coordination of processes
which are beyond the scope of this paper.
From kernel-partitioning we expect to gain
about an order of magnitude increase of the
number of processes that can run in parallel.

As explained before, we expect to see very
large operator trees in MOOD. These trees have
the potential for massively parallel inter-
pretation, especially since the operators of
TransBase are rather fine-grained, resulting in
about 80 different, highly specialized and
therefore rather small operators, most of
them having less than 10 KB of code.
One clearly advantageous property of operator
trees is the fact that every mode must
communicate with only a few neighbours. The
communication topology is fixed and known in
advance after the query optimization phase.
Even the structure of the data to be
communicated is known. This opens up many
optimization and load-balancing possibilities
at the interprocess communication level. It is
clear that query-optimization and communi-
cation-optimization are not independent and
cause challenging research questions.
In many cases. especially in the near future,
there will be not nearly as many processors in
a typical workstation or server as there are
potential processes resulting from a large
operator tree. Therefore an important question
is how to cut an operator tree into subtrees to
be made into processes. Again, this problem is
not independent of the classical query-
optimization in relational or deductive data-
base systems.

5.4. Intra-Operator Parallelism

Some operators needed in an extended
relational algebra for a logic programming
system are quite compute intensive. Our
preliminary analysis indicates that they will
require at least 500 MIPS to keep up in real
time with the data stream delivered by a
single Winchester disk, if it is driven by a
raw-l/O file system. Such operators are prime
candidates to be parallelized themselves,
since 500 MIPS will not be delivered by
workstations for some time.
Intra-operator parallelism can be used in
addition to the techniques discussed before,

328

but from an optimization point of view it is
not independent of these techniques. MIPS
demands of different operators are vastly
different. Therefore it will probably be useful
to exploit intra-operator parallelism even
before the potential for intra-operator
parallelism has been exhausted.

5.5. Database Partitioning

For ambitious applications - like the ones
discussed in this paper - database and logic
programming systems become heaviliy
CPU-bound. But with increasing processor-
speed and massive parallelism, an I/O
bottleneck must be reached, of course. At this
point partitioning a database across several
disks becomes the obvious next step to
improve performance and to hand the neck of
the bottle back to the processors. The
question, how to partition a database and how
to distribute the partitions across a collection
of disks in the context of massive parallelism
is difficult. It depends - of course - on the
population and dynamics of the queries to be
posed in a particular application, and
therefore we have again a fascinating
optimization problem. But it will not be until
sometime in the future that we have to face
this problem.

References

[iI

[21

[31

M.L. Brodie, F. Bancilhon, C. Harris, M. Kifer,
Y. Masunaga, E.D. Sacerdoti, K. Tanaka: Next
Generation Database Management Systems
Technology. In W. Kim, J-M. Nicolas, S.
Nishio (eds): Deductive and Object-Oriented
Databases, Elesevere Science Publishers,
Amsterdam, The Netherland, 1990, pp. l-l 3
M. Stonebraker, L.A. Rowe, B. Lindsay, J.
Gray, M. Carey, M. Brodie, P. Bernstein, D.
Beech: Third Generation Data-Base System
Manifesto.
M. Atkinson, F. Bancilhon, D. Dewitt, K.
Dittrich, D. Maier, S. Zdonick: Th e
Object-Oriented Database Systems Mani-
festo. In W. Kim, J-M. Nicolas, S. Nishio

(eds): Deductive and Object-Oriented
Databases, Elesevere Science Publishers,
Amsterdam, The Netherland, 1990

[41 F. Manola: An Evaluation of Object-Oriented
DBMS Deve/opments.Technical Report
TR-0066-10-89-165. GTE Laboratories,
Waltham, MA, 1989.

[51 A. Silberschatz, M. Stonebreaker, J.D. UII-
mann (eds.): Database Systems: Achieve-
ments and Opportunities (‘Lagunita Re-
port’). Technical Report TR-90-22, Dept. of
Computer Sciences, The Univ. of Texas at
Austin, Austin, Texas,l990.

WI B. Freitag, H. SchBtz, G. Specht: LOLA - A
Logic Language for Deductive Databases and
its lmplemen ta tion. Technical Report
TUM-19043, lnstitut fiir Informatik, Tech-
nische Universitat Miinchen, Nov. 1990.
Also DASFAA ‘91 Conference, Kogakuin
University Tokyo, Japan

[71 TransBase Relational Database System,
System Guide, Version 3.3, Manual,
TransAction Software GmbH, Munich .1989

PI MYRIAD: An innovative Fulltext Database
Sys tern. TransAction Software GmbH,
Munich 1990

PI R. Bayer: Nondeterministic Computing,
Heterogeneous Transactions and Recursive
Atomicity. Invited Paper, CompEuro 91,
Bologna, Italy, May 1991

[lo] J.D. Ullmann: Principles of Database and
Knowledge-Base Systems, Vol. II: The New
Technologies. Computer Science Press,
Rockville 1989

[l l] Th. Huber: Typfiberpriifung fiir die Logik-
sprache LOLA . Diploma Thesis, Technische
Universitat Munchen, Munich 1990

1121 R. Bayer: Query Evaluation and Recursion in
Deductive Database Systems. Technical
Report TUM-18503, lnstitut fur Informatik,
Technische Universitat Mtinchen, 1985

[131 D. Haderle: Private Communication
[14] G. Specht: Wissensbasierte Althebrtiischer

Morphosyntax: Das Expertensystem AMOS.
EOS Verlag, 1990

[15] H.Schmidt: An Expert Deductive Database
System. Dissertation, lnstitut fijr Informa-
tik, Technische Universitat Mtinchen, 1989.

329

