Variable UB-Trees: An efficient way to accelerate
OLAP queries!

Volker Markl*
*Bayerisches Forschungszentrum
fiir Wissensbasierte Systeme
Orleansstrafle 34

81667 Miinchen
Germany

volker.markl@forwiss.de

Michael G. Bauer™

Rudolf Bayer*+
FInstitut fiir Informatik
Technische Universitat Minchen

Orleansstrafle 34

81667 Miinchen
Germany

{bauermi,bayer}@in.tum.de

http://mistral.in.tum.de

1 Introduction

Pre-computation, clustering and indexing are com-
mon techniques to speed up query processing. Pre-
computation results in the best query response time
at the expense of load performance and secondary
storage space. For data warehousing (DW) applica-
tions, pre-computation is mostly discussed for ag-
gregation operations [CD97]. Indexing is used to
efficiently process a query if the result set defined
by the query restrictions is fairly small. Favor-
ing retrieval response time over update response
time allows to build several indexes on one table or
data cube of a data warehouse. Bitmap indexes are
widely discussed as an improvement over B-Trees
for DW applications, since they efficiently evaluate
queries with multi-attribute restrictions. However,
the overall result set still must be relatively small.
This is a major drawback of bitmap indexes, since
usually a relatively large part of a cube must be
accessed in order to calculate aggregated measures.
Clustering places data that is likely to be accessed
together physically close to each other. The goal
of clustering is to limit the number of disk accesses
required to process a query by increasing the likeli-
hood that query results have already been cached.

1Proceedings 2. GI-Workshop “Data Mining und Data
Warehousing als Grundlage moderner entscheidungsun-
terstiitzender Systeme” (DMDW99), LWA99 Sammelband,
ISBN 3-929757-26-5, pp. 79-88, Univ. Magdeburg, Ger-
many, September 1999

79

Clustering has been well researched in the field of
access methods. B-Trees, for instance, provide one-
dimensional clustering. Multidimensional cluster-
ing has been discussed in the field of multidimen-
sional access methods. See [GG97] and [Sam90]
for excellent surveys of almost all of these meth-
ods. A large fragment of queries are ad-hoc queries,
where pre-computation cannot be anticipated due
to the sheer number of possible aggregate paths.
However, one requirement of DW is to efficiently
deal with ad-hoc queries. Pre-computation also
leads to a view maintenance problem. The Trans-
action Processing Council has taken this fact into
account by creating two new benchmarks from the
TPC-D benchmark, namely the reporting bench-
mark TPC-R and the ad-hoc benchmark TPC-H.
Pre-aggregation is largely limited for the ad-hoc
benchmark. The focus of our paper is on acceler-
ating ad-hoc queries. In earlier papers [MRB99],
[MZB99] we have proposed to accelerate ad-hoc
OLAP queries by multidimensional access methods
in combination with multidimensional hierarchical
clustering (MHC) and the Tetris algorithm which
utilizes restrictions to process a table in sort order
of any attribute without external sorting. Experi-
ments with the TPC-D benchmark as well as tests
with a 5 GB real-world data warehouse from a SAP
customer showed that the UB-Tree is a very suit-
able multidimensional access method to be com-
bined with MHC and the Tetris algorithm. In this

001 010 011 100 101 110 111

0 00 ioolioliooioo
© i 0

(0L 1 00 0L i 00 i 0L : 00 i 0

0 i 00 00 0L 0 0 : 0l
0 0 i 00

S1: 10 0 1 i 10 0 11 10 0 1

o ool ioon oo

(0L 1 00 0L i 00 i 0L : 00 i 0

00 i 00 00 0L 0 O Ol

i1 0 1 P10 0111001

000100 100 100 1 iom:ouiom
0 oW 0 i o0

8
g

558 1888 1588 1888 |8
2
=}
o
e

0 : 0L 0 00 : Ol : 00 : 0L i 00 : O
1| 100 10 0 10 0 10 0 o1 o111
00 © 00 : 0L : Ol i 00 i 00 i 0 : 01
0 0 11 10 11 G 10 1 111 10 11
00 10 0 10 0 10 0 o1 ¢ o1 1o
10 | 10 10 11 11 10 10 11 1
00 : 0L : 00 : OL : 00 : Ol : 00 : 01
00 10 0 10 0 10 0 o1 o: o111
u | 10 10 11 11 10 10 1 1
00 1 ¢ 10 0 1 P10 P m i1 m
(a) (b)

Figure 1: Z-addresses

paper we propose the variable UB-Tree (VUB-Tree)
as a further optimization for special data distribu-
tions. It is a generalization of the UB-Tree that
takes the distribution of the data in each dimen-
sion explicitly into account, thus leading to a better
performance for certain data distributions where
otherwise the dimensions are not treated symmet-
rically for range restrictions.

2 Variable UB-Trees

2.1 The UB-Tree

The UB-Tree [Bay96] uses a space filling curve to
create a partitioning of a multidimensional universe
while preserving multidimensional clustering. Us-
ing the Lebesgue-curve (Z-curve, Figure 1a) it is a
variant of the zkd-B-Tree [OMS84].

To define the UB-Tree partitioning scheme we
need the notion of Z-addresses and Z-intervals. We
assume that each attribute value z; of attribute A;
of a d-dimensional tuple z = (x1,...,24) consists
of s bits and we denote the binary representation
of attribute value x; by =; s_12is—2... 0.

A Z-address o = Z(x) is the ordinal number of a
tuple x on the Z-curve and is calculated by inter-
leaving the bits of the attribute values:

[

s—

Z(w) =3 D wig 2

j= =1

For an 8x8 universe, i.e., s = 3 and d = 2, Figure
1b shows the corresponding Z-addresses in binary

represenation. The binary numbers should be read
from left to right and top to bottom within a sub-
square.

A Z-region [:] is the space covered by an
interval on the Z-curve and is defined by two Z-
addresses a and (3. Figure 2b shows the Z-region
[4:20] and Figure 2c shows a partitioning with five
Z-regions [0:3], [4:20], [21:35], [36:47] and [48:63].

The UB-Tree utilizes a B*-Tree to partition
the multidimensional space into Z-regions, each of
which is mapped onto one disk page. At insertion
time a completely filled Z-region [: (] is split
into two Z-regions by introducing a new Z-address
v with @ < v < 3. 7 is chosen such that the first
half (in Z-order) of the tuples stored on Z-region
[:] is distributed to [« : 7] and the second half is
stored on |y : 8]. Thus a worst case storage utiliza-
tion of 50% is guaranteed. There is some freedom of
choice for the Z-region split. For optimal query per-
formance the split algorithm for UB-Trees tries to
maintain rectangular regions and minimize fringes
whenever possible. Assuming a page capacity of 2
points Figure 2a shows ten points whose insertion
into an empty UB-Tree created the partitioning of
Figure 2c.

The UB-Tree requires logarithmic time (in the
cardinality of a relation R) for the basic operations
of insertion, point retrieval and deletion.

2.2 Address Transformation

The above mentioned partitioning works very well
for uniformly distributed data. For other data dis-
tributions the techniques of UB-Trees may be en-

80

(b)

Figure 2: Z-regions

hanced to provide an even better performance. In
a case where the actual domains of certain dimen-
sions have a very narrow range of values (e.g. the
day, month or year of a date is mapped to a 32-bit
integer value), it can happen that pages are split
mainly in those dimensions that have a broad range
of values in their attributes [LS90]. Of course this
also causes splits in the unevenly populated dimen-
sion but this is usually not sufficient. A query that
is restricted in such an unevenly populated dimen-
sion touches a lot of regions because it does not
restrict the query volume enough.

Example: Imagine three attributes x,y, z with
the possible domain in the range of [0,7]. In
bit representation they should have the follow-
ing actual domains:

W, = {000,001, 010,011, 100,101,110, 111},
w, = {000,010,011}, W, = {000,001}. The
possible UB-addresses x1y121T2y22223y323 all
have a structure like £100 x2y20 z3ysz3. The
consequence of this structure is that splits in
those bits which are set to 0 for all possible
addresses will not have any effect on the space
partitioning but instead lead to a strongly lay-
ered partitioning.

Differences are especially visible if queries are
answered which have the characteristics of hyper-
planes. Hyperplanes are an extreme case of range
queries which are restricted in only one attribute.
If a query is restricted to an interval in an unevenly
populated actual domain then the consequences are
not very different to the extreme case. In the above
example all regions are affected if a query is only
restricted to the actual domain W, . If the interval
is restricted to only one value from W, then still all

81

worst case best case

Figure 3: Cutting through a puff pastry

of the pages have to be read if splits have not yet
affected the last bit of W,. The picture changes if
queries are made which are restricted in the evenly
populated domains. The number of retrieved re-
gions is reduced a lot in such a case.

This effect is called puff pastry effect as the sce-
nario can be informally seen as if a knife (the
query) is cutting through a puff pastry (the UB-
Tree) (Fig. 3).

Due to this it is necessary to transform the data
for the address calculation. The actual data which
is stored in the database has to remain the same of
course.

2.3 Split Point Trees with Quantiles

For uniformly distributed data the partitioning of
the universe is optimal if the universe is split re-
cursively in the middle. This partitioning leads to
split hierarchies which can be represented in a tree.
This tree is called a split point tree. For arbitrary
data distributions a partitioning which recursively
divides the space with respect to the data distribu-

50%

/O\

0
0 1
12.5%}(%7.5%
0

< % o %

1
0 1
62.5%/C(>§87.5%

< % o %

Figure 4: Universal split point tree

tion can lead to a much better partitioning. The
consequence of this is that the classic partitioning
is only a special case of a more general partitioning
relative to the data distribution (for uniformly dis-
tributed data a split in the middle of the universe
is the same as a split in the middle of the data dis-
tribution). Figure 4 shows the first levels of the
general split point tree.

Due to the nature of the split hierarchies, the
split point tree represents the data distribution of
one underlying attribute. This makes it necessary
to analyze the data distribution for every attribute
to which a split point tree should be attached. It is
fairly easy to calculate a split point tree if the data
distribution and certain parameters (e.g., u and o
for Gaussian distributed values (Fig. 5)) are known.
The node values are the a-quantiles of the distri-
bution, i.e., the values of the domain where the
cumulated data distribution exceeds a-percent. As
we want to split the data recursively in the middle
of the data distribution we choose the a-quantiles
with a = 2126]2% (k denotes the nodenumber from
left to right starting with 0 for every level) for the
node values of the split point tree (Fig. 4). A sim-
ilar transformation using quantiles is also used in
combination with hashing techniques [KS87].

In cases where the data distribution is unknown
it is necessary to do an intensive analysis of the data
to calculate the desired a-quantiles. Algorithms for
the calculation of a-quantiles have been published
in the literature [JC85], [Raa87].

A split point tree which is attached to an at-
tribute can be used after its creation to transform
the values into a new representation which meets
the characteristics of a uniform distribution. By

82

of the universe
25% 50% 75%
T T T

.00
090
0801
070 :
0.60-
0.50 - . 1
040 / -
030]
020 :
010 7 1

N
.
L

probability density ->

25% 50% 75%
of data distribution

Figure 5: Determining a-quantiles

annotating the edges of the split point trees with
bits (0 for left edges, 1 for right edges) a transfor-
mation f : D — B (D denotes the domain val-
ues, B the resulting bitstrings) can be performed
which transforms each value into a new bitstring.
This is done by traversing the tree and deciding
at every tree level if the attribute value is smaller
or equal/larger than the node value. According to
this, bits in the bitstring are set.

The transformation f (from now on referred to as
vub_trans) is defined by the following algorithm
(in pseudo code).

fct vub_trans = (tree t, attr a) bitstring r

node = t[root];
i= 0;
while (i < height(t))
if a >= node
setBit(r, i);
node = rightSon(node);
else

clearBit(r, i);
node = leftSon(node);
i+ 1;

i
return r;

The created bitstring replaces the original attribute
value in the calculation of the Z-address (of course
the original value is stored in the database).

If the split point tree is not of sufficient height,
the transformation creates the same bitstrings for
different input values. This can cause duplicates
for the address calculation and can be prevented by
using either a tree of a sufficient height or by using
an interpolation technique which calculates node
values of a tree on the fly during the transformation
by simply splitting the intervals on the last tree
level in the middle. This technique though assumes
that the values are uniformly distributed after the
last tree level, which is not neccessarily the case.

To retransform a value from a bitstring, the tree
has to be traversed with the bitstring as the input.

fct vub_reTrans (tree t, bitstring r) attr a
node =t[root];
a = minval(a);
i=0;
while(i < height(t))
if bitSet(r, i)
a node;
node = rightSon(node);
else
node leftSon(node);
i+ 1;

i

return a;

3 Performance of VUB-Trees

In [Mar99] a very accurate cost model for the UB-
Tree has been developed. With this cost model it
is possible to make assumptions about the approx-
imate number of pages that will be retrieved by a
query. This cost model can be adapted to variable
UB-Trees. For the sake of completeness the cost
model from [Mar99] is presented first.

3.1 Cost model for classic UB-Trees

A table with p pages has (p) = log, p hierarchical
split levels. The number of completed split levels

[(p) is therefore

Iy =1(p) = [l(p)] = [logs p]

At split level i the idealized uniform partitioning
divides the multidimensional space with respect to
the " left bit of the UB-address. Therefore the
number of splits with respect to one attribute j is
at least [;) =1 (p) +d = L%J Another additional
complete split exists if {; modd > d — j. Please
note that in the current implementation and in this
paper the leftmost bits of the UB-address are as-
signed to the rightmost dimensions. Also note that
the numbering of dimensions starts with 1. With
this consideration in mind the number I; of com-
pleted splits in dimension j is:

b = {

If i) # I for some attribute k, there is another
incomplete split level for attribute j = d — (I} mod
d) at split level i. The complete split levels produce
only 24 pages, thus p — 2! pages are missing to
reach the given number of pages, i.e., the table size.
These regions are created from the 2! pages by
splitting these pages with respect to attribute j.
Therefore the probability of an additional split in
an attribute j is:

ljl +1
Ly

,if Iy modd >d—j
, otherwise

p—2't

py(d,p) = o =5 — Lif j=d— (I, mod d)
0 , otherwise

83

In the following we assume that the boundaries
of the query interval in each dimension are normal-
ized to the interval [0,1]. If we have s completed
split levels in dimension j, then the number of slices
of the multidimensional space that are overlapped
by the query box [a,b] in dimension j can be de-
termined by counting the slices that are contained
in the interval [0, b;] but not in the interval [0, a;].
Since the slice containing a; is also a slice over-
lapped by the query box, we have to add it to the
above difference to get the correct number of slices.
If the number of slices for the interval [0, ¢] is calcu-
lated as | ¢2°] a non-existing slice 2° 4+ 1 was added
for ¢; = 1 by the above formula. We must correct
this error for the case a; < 1 and b; = 1. This is
done by decrementing the number of slices by one.
For a; = b; = 1 the subtraction removes the error
by itself, therefore no correction is necessary here.

The number of slices n(a;,b;,s) in dimension j
overlapped by the query interval [a;, b;] for the s
completed splits in dimension j can be calculated
by the following formula:

n(aj, by, s) :{

If the probability of an incomplete split is taken
into account, the number of slices overlapped by
a query range in a certain dimension can be de-
rived from the value for the completed splits. By
subtraction we calculate how many slices would be
overlapped additionally, if another completed split
existed. For each of these splits the probability of
its existence is p;(d,p). The average number of
additional splits may then be calculated by a sim-
ple multiplication. We get the number of slices in
dimension j overlapped by the range [a;, b;] as fol-
lows:

nj(dapv ajvbj) =

2% — I_anSJ, lfb_] == 1/\aj 7& 1
|b;2°] — |a;2°| + 1, otherwise

n(a;, b;, 1;(d, p)) +
+((aj,bj,1j(d,p) +1) —
(ajﬂb l; (dap))) p](dap)

The key attributes are independent and the
query box is iso-oriented with respect to each di-
mension. Therefore the number of pages u is cal-
culated by multiplying the number of slices in each
dimension:

u(d,p,a,b) = | | n;(d, p,a;,b;)

H':j&

3.2 Cost model for wvariable UB-
Trees

The assumption in 3.1 is that of an idealized uni-
form partitioning of the multidimensional space,
where the attributes are uniformly distributed and
independent. With variable UB-Trees this assump-
tion holds because of the transformation with split
point trees. Due to the way the address calcula-
tion is modified for variable UB-Trees also the cost
model requires adaption.

A closer look at the cost model reveals that the
boundaries of the query box can no longer be used
in this form, because the underlying space parti-
tioning is no longer the same. This would result in
a query box which would touch regions where no tu-
ples answering the query are located. It is therefore

84

necessary to transform the boundaries of the query
box in the same way as the other tuples that were
inserted into the database. It is then possible to
get a new function to calculate the costs by simply
replacing the query boundaries a and b by a' and
bt which denote the new transformed boundaries.

To calculate the new boundaries a® and b? of the
query box one can make use of the bitstring into
which a and b are transformed by vub_trans().
This function sets bits according to the position
of the value relative to the data distribution. As
every bit corresponds to exactly one node (which
represents exactly one percentage) in the split point
tree a can be calculated as

‘ vub_trans(a)
a = 9bitlength(vub_trans(a))

The function bitlength() is equivalent to the
length of the path from the root to the leaf in the
split point tree.

This leads to a new function to calculate the
number of slices for dimension j which are over-
lapped by the query interval for the completed
splits in dimension j.

s _ |qt2s|. if bt = t
e 855 = { o o T e
Lj J—Laj | + 1, otherwise
Therefore:
_ t
ni(d,p,at,b5) = n(al,bt,1;(d,p)) +
+((a],b],l (dap)+1)7
- n(ajabj7l (d7p))) p](d7p)
And:
d
(d paa bt :H dpaa_]vb;)

4 Performance Measurements

For the measurements the database
gaussuni6d500k (containing 500000 tuples)
was used. It consists of five independent Gaussian
distributed (x = 8000000, o = 1000) and one
uniformly distributed index attribute. A 100 bytes
binary character string was added to each tuple
to increase the number of pages in the database.

Dimension || 1|2 |3 |4 |5]| 6
Splitlevels || 1 [1|1]1]1]11

Table 1: Split levels for gaussuni6d500k

In a three dimensional scenario (one uniformly
and two Gaussian distributed attributes) the
values would be accumulated inside a cylinder in a
cube, where the cube represents the universe. All
measurements were performed with the prototype
implementation of the UB-Tree [MP] for the
database system Transbase [TAS98]. The results
are the same for Oracle and DB/2 since they show
conceptional advantages of variable UB-Trees
which are not database specific.

We start with a closer look at the classic UB-Tree
and its behaviour for the above mentioned data dis-
tribution.

The co-domain of integer values in the prototype
implementation of the UB-Tree is 24 bits. This
leads to an extremely strong puff pastry effect be-
cause the values of the Gaussian distributed at-
tributes are located around p in a range of about
8o (approx. 213). All these values have the same
prefix 011110100015. The consequence is that the
first 11 steps of the UB-address have identical bits
for 5 dimensions for all addresses in the database
and that splits will only affect the last 13 bits. Only
the uniformly distributed attribute can add splits
in the otherwise constant 11 steps. The n-th step
in the above context is the part of the UB-address
that is created by bit-interleaving the n-th bits from
every dimension.

With the help of the cost model we can expect
from p = 50670 I(p) = log, p = log, 50670 ~ 15.6
hierarchical split levels. Since 11 splits have to oc-
cur in the uniformly distributed attribute only 4
to 5 splits are left over. These splits are divided
among the other five attributes which results in at
most one split in the other 5 dimensions (Table 1).

This leads to a strongly layered space partition-
ing. If the size of the database were increased by
several orders of magnitude then also more splits
in the Gaussian distributed attributes would occur
and the effect would be lessend. The number of
splits though is logarithmic in the number of pages
in the database so this would lead to exponentially
larger databases which get easily beyond reasonable

85

sizes even in data warehouse environments.

The first split tries to partition the universe ex-
actly in the middle (which is 223 = 8388608) in
each dimension. This does not lead to a partition-
ing of the attributes in the Gaussian distributed
dimensions, but only in the uniformly distributed
attribute. Even the next splits in the Gaussian dis-
tributed attributes at 25% (= 4194304) and 75%
(=12582912) do not lead to any improvement of the
situation because the distribution is slightly shifted
from the center of the dimension and has a very low
0. The same split in the uniformly distributed at-
tribute again leads to a partitioning. Informally
speaking the universe has to be truncated to the
actual domain so that splits can occur which really
partition the space.

Figure 6 shows two c¢%-measures for
gaussuni6d500k. In an original c%-measure
n — 1 dimensions are set to ¢% while the remaining
dimension grows from 0% to 100% of the domain.
The c%-measures in this series of measurements
were slightly adapted for the special requirements.
The restrictions in the n — 1 dimensions are no
longer set to ¢% of the universe, but instead to ¢%
of the data distribution. This is necessary because
the data distribution is located in a very small
area of the universe. The graphs in Figure 6 show
the number of pages which had to be retrieved to
answer the queries.

Measurement: For Figure 6a a 35%-measure for
gaussuni6d500k was performed. The first
Gaussian distributed index attribute was vari-
able and grew from 0% to 100% of the data
distribution in 1% steps.

In Figure 6a a huge increase of the number of
retrieved pages at about 30% of the data distri-
bution is visible. This step shows a split in this
dimension because the number of pages is constant
before and after the change. This proves the as-
sumptions made above that at most one split can
occur in the Gaussian distributed attributes.

Measurement: In this measurement (Fig. 6b)
the variable attribute was the uniformly dis-
tributed attribute. The other Gaussian dis-
tributed attributes were restricted to 35% of
the data distribution.

The results of this measurement are completely
different to the previous one. At first glance no

18000

17500

17000

16500

16000

15500

number of retrieved pages

15000

14500

0O 10 20 30 40 50 60 70 80 90 100
percentage of data distribution

(a)

50000
45000 -
40000 -
35000 -
30000 -
25000 -
20000 -
15000
10000
5000 -

number of retrieved pages

0 20 40 60 80 100
percentage of data distribution

(b)

Figure 6: 35%-measure for gaussuni6d500k in the first Gaussian distributed attribute (a) and in the

uniformly distributed attribute (b)

splits are visible at all in Figure 6b. The theo-
retical considerations showed 2! (= 2048) splits in
this dimension. With such a high number it is clear
that no isolated splits occur. They degenerate into
a straight line if the graph is not plotted with an
extremely high resolution. A straight line as shown
in Figure 6b is also characteristic for a compound
B-Tree. The number of pages only depends on the
selectivity of the uniformly distributed attribute (as
in this attribute the most splits occur). The num-
ber of retrieved pages in this query can be calcu-
lated by the formula sg - p where sg denotes the
selectivity of the uniformly distributed attribute.
This means that the UB-Tree degenerates in its be-
haviour into a compound B-Tree with sg as the first
attribute.

In the rest of this section we examine the im-
provements which are possible with a variable UB-
Tree.

The database gaussuni6d500kvar was created
with exactly the same data as gaussuni6d500k.
The only difference was that split point trees of
depth 10 were used to transform the Gaussian dis-
tributed attributes. With the help of the cost
model it is again possible to do some calculations
which then can be verified by measurements. The
number of pages p = 50540 is at the same level
as with classic UB-Trees. The number is slightly
different though which shows that transformed tu-
ples are stored in a different order than with classic
UB-Trees.

The number of pages leads again to l(p) =
logyp = log, 50540 ~ 15.6 expected hierarchical

86

Dimension || 1|2 |3 |4 |5 |6
Split levels || 2 |2 |2 |3|3]3

Table 2: Split levels for gaussuni6d500kvar

split levels. Since it is assumed that the trans-
formed values come close to the uniform distribu-
tion the splits are approximately distributed in the
same way over the 6 dimensions. Table 2 shows
the expected numbers. At this point the order of
the attributes is important again (3.1). The order
of right to left is due to the fact that the address
calculation in the prototype implementation starts
with the rightmost dimension. In addition to Table
2 dimension 3 has an additional incomplete split.

Measurement: Figure 7a shows the results
for a 85%measure for the database
gaussuni6db00kvar. The first Gaussian

distributed attribute grew from 0% to 100%
of the data distribution. For this attribute (as
well as for the other 4 Gaussian distributed
attributes) a split point tree was available to
transform the original attributes.

From the first column in Table 2 one can expect
2 split hierarchies in this attribute which divides
the dimension into 22 = 4 intervals. The graph in
Figure 7a shows exactly these 4 distinctive splits.

Measurement: Figure 7b shows the re-
sults for a 35%-measure for the database
gaussuni6d500kvar. Again the uniformly

800

700

600 [

500

400 |

300

number of retrieved pages

200

0O 10 20 30 40 50 60 70 80 90 100
percentage of data distribution

(a)

1000
900 |
800 [
700 |

600
500
400
300

number of retrieved pages

200
100

0 20 40 60 80 100
percentage of data distribution

(b)

Figure 7: 35%-measure for gaussuni6d500kvar in the first Gaussian distributed attribute (a) and the

uniformly distributed attribute (b)

distributed attribute grew from 0% to 100%
of the data distribution (which is identical to
the co-domain in this case). This attribute
was not transformed with a split point tree.

There are apparently more steps than in Fig-
ure 7a, but the number does not differ as much
as for classic UB-Trees between Figure 6a and Fig-
ure 6b. Every step can be assigned to a split in
each dimension. With Table 2 it is again possi-
ble to calculate the number of expected splits for
these dimensions. This gives an expected value of
8 (= 23) splits for this dimension. Figure 7b shows
exactly these splits.

In Figure 6a the number of retrieved pages starts
at 14956 pages and grows to 17529, while the num-
ber of pages with the variable UB-Tree for the same
measurement grows from only 159 pages to 712
pages. This means that with variable UB-Trees the
number of pages is at the beginning smaller by a
factor of 94(!) and at the end still by a factor of 24.
Although the factor sharply decreases, the speedup
for queries is tremendous. The elapsed time for an-
swering the queries is directly linked to the number
of retrieved pages and thus ad-hoc OLAP queries
are sped up significantly.

5 Summary

The previous sections explained the theoretical
background of variable UB-Trees and the neces-
sity of their application in certain cases. The puff
pastry effect of classic UB-Trees is avoided. The

variable UB-Tree proved in the presented measure-
ments that it is able to completely eliminate the
puff pastry effect and to achieve the performance
as it would be expected for classic UB-Trees with
uniformly distributed data. The gain for ad-hoc
OLAP queries is significant.

However, it is not possible to use variable UB-
Trees for every data distribution. Especially im-
portant is that for data distributions which do not
cause a puff pastry effect the number of retrieved
pages can even be higher than for a classic UB-
Tree although exactly the same data was spooled
into the database. This restricts the usage of vari-
able UB-Trees to certain data distributions. These
cases have to be identified exactly. If the data dis-
tribution changes in an already existing database
then the whole database has to be reorganized be-
cause the split point trees, which are required for
variable UB-Trees, have to be chosen before any
data is spooled into the database. This makes
VUB-Trees static for one data distribution. For
dynamic applications this is not always useful, but
in typical DW applications this is not a problem as
the databases are periodically reorganized in many
cases (although this should be avoided in general).
The complete data is then even available for an
exhaustive analysis before it is reinserted into the
database.

87

References

[Bay96]

[BM72]

[BMOS]

[CDY7]

(GGOT]

[JC85)

[KS87]

[LS90]

[MB97]

R. Baver. The UB-Tree for Mul-
tidimensional Indexing. Technical re-
port 19637, Institut fir Informatik, TU
Miinchen, November 1996.

R. BAYERrR, E. McCREIGHT. Orga-
nization and Maintainance of Large
Ordered Indexes. Acta Informatica 1,
1972, pp. 173-189.

R. BAYER, V. MARKL. The UB-
Tree: Performance of Multidimensional
Range Queries. Technical report 19814,
Institut fiir Informatik, TU Miinchen,
1998.

S. CHAUDHURI, U. DAvaL. An
Overview of Data Warehousing and
OLAP Technologies. ACM SIGMOD
Record 26(1), March 1997.

V. GAEDE, O. GUNTHER. Multidi-
mensional Access Methods. ACM Com-
puting Surveys 30(2), 1997.

R. Jain, 1. CHLAMTAC. The P2 Al-
gorithm for Dynamic Calculation of
Quantiles and Histograms Without
Storing Observations. Comm. of ACM
28(10), 1985, pp. 1076-1085.

H.-P. KRIEGEL, B. SEEGER. Multi-
dimensional Dynamic Quantile Hash-
ing is Very Efficient for Non-Uniform
Record Distributions. ICDE, 1987, pp.
10-17.

D. LoMET, B. SALZBERG. The hb-
Tree: A Multiattribute Indexing
Method with Good Guaranteed Perfor-
mance. ACM TODS, 15(4), 1990, pp.
625-658.

V. MARKL, R. BAYER. The UB-
Tree: A Cost Model for Multidimen-
sional Queries in Relational Database
Systems. Internal Report, FORWISS
Miinchen, 1997.

88

[MBOS]

[MRB99)

[MZB9Y]

[Mar99)]

[Raa87]

[OMS4]

[Sam90]

[TAS9S]

V. MARKL, R. BAYER. The UB-Tree:
A Multidimensional Index and its Per-
formance on Relational Database Sys-
tems. FORWISS Miinchen 1998.

V. MARKL, F. RAMSAK, R. BAYER.
Accelerating OLAP Queries by Mul-
tidimensional Hierarchical Clustering.
Proc. of IDEAS, Montreal, Canada,
1999.

V. MARKL, M. ZIRKEL, R. BAYER.
Processing Operations with Restric-
tions in Relational Database Manage-
ment Systems without External Sort-
ing. Proc. of ICDE, Sydney, Australia,
1999.

V. MARKL. MISTRAL-Processing Re-
lational Queries using a Multidimen-
sional Access Technique. Dissertation,
TU Miinchen, 1999.

The homepage of the project MIS-
TRAL containing everything about the
UB-Tree and the prototype implemen-
tation.

http://mistral.in.tum.de/

K. RAATIKAINEN. Simultaneous Esti-
mation of Several Percentiles. Simula-

tion 49, 4, Oct. 1987, pp. 159-164.

J.A. ORENSTEIN, T.H. MERRET. A
Class of Data Structures for Associate
Searching. Proc. ACM SIGMOD Intl.
Conf. on Management of Data, Port-
land, Oregon 1984, pp. 194-305.

H. SAMET. The Design and Analysis of
Spatial Data Structures. Addison Wes-
ley, 1990.

TRANSACTION SOFTWARE GMBH.
TransBase Relational Database System
Version 4.3, Manual. Transaction Soft-
ware GmbH, Minchen, Germany, 1998.

