
Management and Query Processing of

one dimensional Intervals with the UB-Tree ∗

Robert Fenk Volker Markl Rudolf Bayer

Bavarian Research Center for
Knowledge Based Systems

Orleansstraße 34, 81667 Munich, Germany
Phone: +49-89-48095-216, -191

Fax: +49-89-48095-203

{fenk,markl}@forwiss.de, bayer@in.tum.de

Abstract

The management and query processing of one di-
mensional intervals is a special case of extended ob-
ject handling. One dimensional intervals play an
important role in temporal databases and they can
also be used for fuzzy matching, fuzzy logic and
measuring quality classes, etc. Most existing mul-
tidimensional access methods for extended objects
do not address this special problem and most of
them are main memory access methods that do not
support efficient access to secondary storage.

The research in the application of the UB-Tree to
extended objects is part of my doctoral work. The
contribution of this article is a specific solution for
managing and querying one dimensional intervals
with the UB-Tree, a multidimensional extension of
the classical B-Tree. The combination of UB-Tree
and transformation of extended objects to param-
eter space is an effective solution for this specific
problem.

Keywords: one dimensional intervals, extended
object handling, point query, range query, spatial
data, parameter space

1 Introduction

The management of extended objects has been dis-
cussed a lot in the research community and sev-
eral multidimensional access methods (MAM) have
been proposed. R-Trees [8] and quad-trees [16] are
a quasi standard in spatial database applications.
These data structures have been developed to deal
∗This paper was part of the EDBT PhD WOrkshop 2000

in Konstanz, Germany. Personal use of this material is per-
mitted. However, permission to reprint/republish this mate-
rial for advertising or promo-tional purposes or for creating
new collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in
other works, must be obtained from the autors.

with extended objects with a dimensionality greater
than one and they are not specialized for one dimen-
sional objects resp. intervals. On the other hand
there are specialized data structures like the exter-
nal segment tree [5] which are rather complicated
to integrate into a DBMS. However, the problem of
efficient management and query processing of one
dimensional intervals is an interesting question, be-
cause B-Trees and other common access methods of
commercial RDBMS cannot handle them efficiently.
From now on we call one dimensional intervals sim-
ply intervals.

In the following we will give examples of applica-
tions which require interval matching and manage-
ment.

Temporal Databases: Standard databases store
only the current version of the data – a kind
of snap shot, but with temporal databases we
have a history about all changes, versions and
the lifetime of objects, which is seldom a point.

Fuzzy Logic/Matching: The application area of
fuzzy logic resp. matching [9] also can be
mapped to the one dimensional interval match-
ing. Fuzzy matching is not a point query, but
an interval match where the interval width de-
termines the fuzziness of the match.

And also the following applications may be mod-
elled by intervals.

Personalization: Personalizing [17] a web-page
requires to track the user behavior and finding
a given profile which fits this user best. The
behavior of the user and typical profiles can
be expressed as a set of intervals over all ac-
cessed files. For assigning a profile to a user,
one has to match the user intervals with the
profile intervals and find the best matching pro-
file, which is the profile that best overlaps the
user’s intervals.



(17,22)[17,22] Parameter Space

Transformation

1D Interval 2D Point

Figure 1: Endpoint Transformation

Quality Classes: Products like CPUs, cathode
ray tubes and others are produced on the same
assembly line and have to be sorted according
to some quality criteria (e.g., clock rate of the
CPU). Again the properties may be expressed
by a set of intervals and finding the right class
is interval matching.

Commercial RDBMSs usually offer none or only
limited support for interval processing. The prob-
lem of most MAMs is that they are designed as main
memory data structures and therefore do not sup-
port efficient retrieval from secondary storage. The
drawback of others is the complexity of integrating
them into existing relational DBMS technology.

We will show how intervals can be supported with
only minor modifications to a RDBMS implemen-
tation containing a UB-Tree [2, 3] – with Trans-
Base/Hypercube the first commercial RDBMS with
UB-Tree support is available. The ideas are demon-
strated in the context of point containment (find all
intervals containing a specified point) and the inter-
section problem (find all intervals intersected by a
specified interval).

2 Interval Handling with the
UB-Tree

The UB-Tree, as well as other MAMs, cannot ef-
ficiently support interval handling by itself, but in
combination with the transformation of intervals to
parameter space it offers an efficient solution which
is easy to integrate into a commercial RDBMS.

2.1 The Parameter Space

Simple geometric shapes can be considered as points
in higher dimensional space called the parameter
space [15]. The required transformation of an inter-
val in one dimensional space interprets the begin-
ning and end of the interval as coordinates in two
dimensional space. This transformation is called
endpoint transformation and results in a param-
eter space with two dimensions of equal domain.

Fig. 2(a) shows the intervals A, B, C and D,
a point query PQ and an interval query IQ. The
points in parameter space corresponding to the in-
tervals are depicted in Fig. 2(b)-2(d). Points would
map to the main diagonal, because they are in-
tervals of width 0. Formulating queries is now

a1

a2
b1

b2

c2

c1

A

B

C

D IQ

PQ

max

(a)

C

d2

c2

b2

a1 c1b1d1

B

a2

PQ

A

D

Point Query

(b) PQ

c2

b2

a1 c1

C

b1d1

d2

a2
D

A

B

IQ

Intersection
Query

(c) IQ

a2

c2

b2

a1 c1b1d1

d2

IQ

C

D

A

Containment

Enclosure
Query

Query

B

(d) EQ and CQ

Figure 2: Native Space and Queries in Parameter
Space

quite simple. As domain for the intervals we as-
sume U = [0,max]. A point query (PQ) speci-
fied by p ∈ U can be answered by the query box
[(0,max), (p, p)] (Fig. 2(b)). An intersection query
(IQ) specified by [s, e] (where s, e ∈ U) maps to
the query box [(0,max), (e, s)] (Fig. 2(c)). Similar,
containment queries (CQ) map to the query box
[(0,max), (s, e)] and enclosure queries (EQ) map to
the query box [(s, e), (e, s)] (Fig. 2(d)).

All the necessary transformations are fairly sim-
ple and result in iso-oriented query boxes. How-
ever, another transformation method the midpoint
transformation [7] has the problem that all typical
queries result in query boxes, which are not iso-
oriented. Therefore, we do not consider this trans-
formation method.

Despite the conceptual elegance, the parameter
space approach has several disadvantages [7, 15],
but they can be neglected in case of intervals, since
then parameter space always has two dimensions.

2.2 Evaluation

Now we use the UB-Tree to index the parameter
space. For example Fig. 3(a) shows two thousand
Gaussian distributed intervals in parameter space
and Fig. 3(b) the resulting UB-Tree partitioning of
the parameter space. As one can see from the space
partitioning, the UB-Tree adapts quite well to the



(a) Parameter Space

(b) UB-Tree

Figure 3: Distribution of intervals in parameter
space and UB-Tree partitioning

non-uniform data distributed in parameter space.
Earlier measurements [4, 11, 12, 6] have proven that
its performance is excellent for up to six dimensions.
There is an constant overhead for the PQ, IQ and

EQ, because the query box resulting from the pa-
rameter space transformation always starts in the
upper left corner (0,max). However, there are only
a few UB-Tree regions covering a large sparsely pop-
ulated area. Further they should remain in cache
memory, because most of the queries require them.

To evaluate this approach further we check the
requirements a MAM should meet according to [7].
Our approach inherits the following good proper-
ties of the UB-Tree [13]: excellent secondary stor-
age management, logarithmic worst case guarantees
for all major operations, a query response time that
is linear to the size of the result set, independence

of input data and insertion sequence, scalability to
database growth and small space requirements for
the index.

Both the UB-Tree and the necessary parame-
ter space transformations are straight forward ap-
proaches and they are easy to implement and robust
to be used in large-scale applications. Additionally
they can be integrated with minimum impact to
existing parts of a RDBMS, as long a it supports a
B-Tree. Efficient support for interval management
and querying would only require a new data type
for intervals. Only minor changes to existing code
of a RDBMS are necessary.

3 Summary and Outlook

We have presented a hybrid method to manage and
query intervals efficiently. It transforms one dimen-
sional intervals to two dimensional parameter space
and indexes that space with a UB-Tree. The re-
quired transformations to parameter space are sim-
ple and independent of other RDBMS functionality.

In our further research we will investigate the us-
ability and performance of the described approach
with artificial data and, if possible, with real world
data. In order to check the scalability and sec-
ondary storage management we will use databases
which do not fit into main memory (e.g., sev-
eral gigabytes of data). Otherwise all data could
be cached in main memory and the tested access
method has to be rather considered as a main mem-
ory access method and not a secondary storage ac-
cess method. We will also check how other space
filling curves instead of the UB-Tree’s Z–curve re-
sult in better performance.

Finally we may investigate how this approach
applies to extended objects in higher dimensional
space.

References

[1] Bayer, R. and E. McCreight (1972); Organiza-
tion and Maintainance of large ordered Indexes.
Acta Informatica 1 (pp. 173-189)

[2] Bayer, R. (1996); The universal B-Tree for mul-
tidimensional Indexing. Technical Report TUM-
I9637, Institut für Informatik, TU München

[3] Bayer, R. (1997); The universal B-Tree for
multidimensional Indexing: General Concepts.
World-Wide Computing and its Applications ’97
(WWCA ’97), Tsukuba, Japan, 10-11, Lecture
Notes on Computer Science, Springer Verlag

[4] Bayer, R. (1998); R. Bayer and V. Markl.
The UB-Tree: Performance of Multidimensional



Range Queries. Technical Report TUM-I9814, In-
stitut für Informatik

[5] Blankenagel, G. and H. Güting (1994); External
Segment Trees. Algorithmica 12(6) (pp. 498-532)

[6] Fenk, R., Markl, V. and R. Bayer (1999);
Improving Multidimensional Range Queries of
non rectangular Volumes specified by a Query
Box Set. Proc. of International Symposium on
Database, Web and Cooperative Systems (DWA-
COS), Baden-Baden, Germany

[7] Gaede, V. and O. Günter (1998); Multidimen-
sional Access Methods. ACM Computing Survey
30(2) (pp. 170-231)

[8] Gutman, A. (1984); R-Trees: A dynamic in-
dex structure for spatial searching. Proc. of ACM
SIGMOD Conf. (pp. 47–57)

[9] Kaufmann, M. (1991); Pearl, Judea: Probabilis-
tic reasoning in intelligent systems : networks of
plausible inference / Judea Pearl. Rev. 2. print.
- San Mateo, Calif. ISBN 0-934613-73-7

[10] Kießling, W. and G. Köstler (1998);
Multimedia-Kurs Datenbanksysteme. Berlin,
Heidelberg. Springer Verlag, ISBN 3-540-63836-9

[11] Markl, V., Zirkel, M. and R. Bayer (1999);
Processing Operations with Restrictions in Re-
lational Database Management Systems without
external Sorting. Proc. of ICDE Conf., Sydney,
Australia

[12] Markl, V., Ramsak, F., and R. Bayer. (1999);
Improving OLAP Performance by Multidimen-
sional Hierarchical Clustering. Proc. of IDEAS
Conf., Montreal, Canada

[13] Markl, V. (1999); MISTRAL: Processing Re-
lational Queries using a Multidimensional Ac-
cess Technique. DISDBIS, Band 59, Infix Verlag,
ISBN 3-89601-459-5

[14] Orenstein, J.A. and T.H. Merret (1984); A
Class of Data Structures for Associate Search-
ing. Proc. of ACM SIGMOD–PODS Conf. (pp.
294–305)

[15] J. Orenstein (1990); A Comparison of Spatial
Query Processing Techniques for Native and Pa-
rameter Space Proc. of ACM SIGMOD–PODS
Conf. (pp. 343–352)

[16] Samet, H. (1984); The quadtree and related hi-
erarchical data structures. ACM Computing Sur-
veys 16(2). (pp. 187–260)

[17] Kahabka, T., Korkea-aho, M. and G. Specht
(1997); GRAS: An Adaptive Personalization

Scheme for Hypermedia Databases. Proc. of the
2nd. Conference on Hypertext - Information Re-
trieval - Multimedia (HIM ’97), (pp. 279 - 292)


