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Abstract

In this paper, we presentand evaluatealternativetechniquesto
effect the use of location-independentidentifiers in distributed
databasesystems.Location-independentidentifiers are important
to take full advantage of migration andreplicationas they allow
accessingobjectswithoutvisiting theservers that createdtheob-
jects.We will showhowa distributedindex structure canbeused
for thispurpose, wewill presenta simple, yeteffectivereplication
strategy for thenodesof theindex, andwewill presentalternative
strategiesto traversethe index in order to dereferenceidentifiers
(i.e., find a copyof an objectgivenits identifier). Furthermore,
wewill discusstheresultsof performanceexperimentsthat show
sometradeoffsof theproposedreplicationandtraversalstrategies
and compare our techniquesto an approach that useslocation-
dependentidentifiers likemanysystemstoday.

1 Intr oduction

Largedistributedsystemsarebeginningto playadominant
role in theinformationmarket-place.Companiesarebuild-
ing so-calledIntranetsto provide accessto their datafrom
officesall aroundtheworld, andtheWWW is attractingan
ever growing numberof usersandproviding accessto an
evergrowing amountof data.

To achieve acceptableperformancein large distributed
informationsystems,it is importantto replicateandtomove
(migrate)datacloseto siteswherethe datais frequently
used. Both migrationandreplicationcansignificantlyre-
ducecommunicationcostsandhelp load-balancea system
by storingfrequentlyaccessedobjectson differentservers.
Replicationcan,in addition,improvethefaulttoleranceof a
systemsincecopiesof replicatedobjectsareavailableeven
if certainserversaredown or unreachable.

Thebenefitsof migrationandreplicationcan,however,
only beexploitedif thesystemprovidespowerful facilities
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to find all copiesof an objectgiven the object’s identifier.
Principally, a distributeddatabasecanbeorganizedin two
differentwaysin orderto find objects:it canuselocation-
dependentor location-independentidentifiers. Location-
dependentidentifierscontainthe addressof a server that
storesa copy of theobjectand/ortheaddressesof all other
serversthathave a copy of theobject;identifierscan,thus,
bedereferencedby visiting thatserver. Onebig advantage
of this approachis its simplicity. Onebig disadvantageof
this approachis that it cannottake advantageof migration
andreplicationin many situations;for example,if acopy of
anobjectis locatedin Munich(Germany) andtheidentifier
of the objectpointsto a server in SanJosé(USA), thena
requestfrom Passau(Germany) to readthe objectwill be
directed(atpotentiallyhighcost)to SanJosébeforetheob-
ject can(cheaply)beretrievedfrom Munich.

The benefitsof migration and replicationcan only be
fully exploitedif location-independentidentifiersareused.
To dereferencelocation-independentidentifiers,thesystem
typically maintainssomesort of distributed index which
mapsevery identifier to a list of addressesof servers that
have a copy of the referencedobject. Ideally, the nodes
of the index structurearestoredon serversin sucha way
thatobjectscanberetrievedfrom theneighborhoodwithout
visiting distantservers. While this approachis effective to
supportmigrationandreplication,it incursadditionalcost
for probingthedistributedindex whenever an identifierof
a remoteobject is dereferenced.(Of course,local objects
canbeaccessedwithout probingthedistributedindex.) In
this paper, we will show how location-independentidenti-
fiers canbe implementedin a distributedsystem,andwe
will focusespeciallyon techniquesto minimizethecostto
probethe distributed index by meansof caching,replica-
tion andspecializedtraversalstrategies.In additionto these
developments,we will presentthe resultsof performance
experimentsthat evaluatesometradeoffs of the proposed
techniquesand comparethesetechniquesto an approach
thatuseslocation-dependentidentifiers.

Throughoutthis paper, we will concentrateon tech-
niquesto find copiesof objectsasefficiently aspossiblein
thepresenceof migrationandreplication;we will not dis-
cussstrategiesthat actuallydecidewhich objectsto repli-
cateandmigrate,or protocolsthat keepall the replicasof



anobjectconsistent.We recognizethat thechoicefor one
such� strategy andprotocoldependson the target applica-
tion,andthereforedesignedour techniquesto beapplicable
by any kind of system.

Both location-dependentandindependentidentifiersare
usedin existing systems. URLs (uniform resourceloca-
tors) in theWWW areprobablythemostprominentexam-
ples for location-dependentidentifiers; amongdistributed
databasesystemssuchas SHORE[CDF� 94] many other
examplescan be found. Location-independentidentifiers
have beenproposedfor thedomainnameservice[Moc87]
andtheX.500directory[CCI89]—thoughin a very differ-
ent applicationarea. In the researchliterature, location-
independentidentifierswere usedfor mobile telecommu-
nicationsystems[AHMW94, JLS� 95]. Wewill discussthe
differencesto ourapproachin detailtowardstheendof this
paperafterhaving fully presentedour techniques.

The remainderof this paper is organizedas follows.
Section2 shows how distributed databasescan be orga-
nizedusinglocation-dependentandindependentidentifiers.
The following threesectionscontainall the detailsof our
approachanddescribealternative ways to implementand
optimizethe useof location-independentidentifiers: Sec-
tion 3 describesthe distributed index structure,Section4
shows how cachingandreplicationof index nodescanbe
exploited, and Section5 presentsalternative strategies to
probeandtraversethedistributedindex. Section6 summa-
rizestheresultsof performanceexperimentsobtainedusing
a simulationmodel. Section7 discussesrelatedwork and
Section8 concludesthispaper.

2 Object Identification in Distributed
Databases

In this sectionwe will give an overview of how identi-
fiers can be managedin a distributed system. As stated
in the introduction, one of the main design choices is
whetherlocation-dependentor location-independentiden-
tifiers areto beused.While location-dependentidentifiers
arestraightforwardto applyin practice,thereis a largede-
sign spaceof alternative techniquesto effect andtunethe
useof location-independentidentifiers.Wewill presentthat
designspacein thefollowing sectionsandfocusonthefun-
damentalideashere.

2.1 Location-DependentIdentifiers

In thisapproach,everyobjectidentifiercontainstheaddress
of thehomeserverof theobject,i.e., theserver thatcreated
the object. The homeserver storesa copy of the object
and/ora collectionof forwards for thatobject;a forwardis
asimpledatastructurethatcontainstheaddressof (another)
server that storesthat object. Using location-dependent
identifiers,thus,anobjectcanbeaccessedby simply con-
tactingtheobject’shomeserver. Thehomeserverwill reply
by eithersendingacopy of theobject,if it storesone,or by

returningthe collectionof forwards. Migration andrepli-
cationof anobjectinvolvesupdatingthehomeserver’scol-
lectionof forwardsfor thatobject;if, for example,anobject
is replicated,thehomeserverestablishesanew forwardfor
thenew replica. In orderto generateuniqueobjectidenti-
fiers for new objects,serversmaintaincountersandrecord
their valuesin theuniquefieldsof new objectidentifiersor
applyoneof the techniquesdescribedin [EGK95], just as
in a centralizedsystem.

2.2 Location-IndependentIdentifiers

Using location-independentidentifiers,objectscanbe ac-
cessed,migrated,andreplicatedindependentlyfrom where
they wereborn.Thegoalis to avoid any permanentdepen-
dency to onespecificserver (suchas the homeserver) in
orderto be ableto accessthe objectif thatserver is down
or to reducecostif thatserver is, say, heavily loaded.This
goalis achievedby maintainingadistributedtree-structured
index.

Thenodesof this index arestoredon a numberof ded-
icatedserversorganizedin a hierarchy. The hierarchyre-
flects the topologyof the network; typically, the commu-
nicationbetweena nameserver and its child or parentis
cheap(onehop) whereasthe communicationwith a name
server in a differentbranchof the hierarchyis expensive
(several hops). The numberof servers in the hierarchy
and the heightof the hierarchydependon the sizeof the
database,the workload,and the structureof the network.
(See[AHMW94] for a detaileddiscussion.)

Thenodesof theindex arestoredatserversof thehierar-
chyasfollows: therootnodeis storedby theroot serverof
thehierarchy, intermediatenodesarestoredby intermediate
serversandleaf nodesarestoredby leaf servers. Probing
theindex to find thelocation(s)of anobjectcanbecarried
out in a numberof ways(seeSection5) andis influenced
by cachingandreplication(seeSection4),but thebasicpat-
tern is alwaysthe same.First, the server checks,if it has,
say, a copy of theroot of the index. If not, theserver asks
its parentserver in theserver hierarchyfor help. If thepar-
ent server is down or cannothelp, the server will ask the
grandparentserver andso on, until (in the worst case)the
server will askthe root server which definitelyhasa copy
of theroot of the index. Oncetheroot hasbeenfound,the
pointersstoredin the root nodecanbe followedto the in-
termediatenodesandso forth until a leaf nodeis reached.
Whentheleafnodeis reached,theinformationaboutthelo-
cationsof theobjectcanbeextractedandthecheapestcopy
of theobjectcanberetrieved.

2.3 Discussion

In the following, we will briefly comparethe tradeoffs of
the two approachesdescribedabove. First of all, both ap-
proachesperformequallywell if a server createsnew ob-
jects or accesseslocally availableobjectsbecauseneither



approachrequiresinteractionwith otherservers:aswewill
see,� thedistributedindex is constructedin suchawaythatit
neednotrecordnew objectsaslongasthey arenotmigrated
or replicated,andin any case,localcopiesof objectscanbe
readwithoutaskingotherservers.Creatingnew objectsand
accessinglocal copiesof objectsat no additionalcost is a
veryimportantproperty—weexpectthatmany applications
will predominantlywork with localobjects.

Thedifferencesbetweenthetwo approachesbecomeap-
parentif a server intendsto accessremotedata. In this
case,theuseof location-dependentidentifiersinvolvesvis-
iting the homeserver of the object. If the homeserver is
down, heavily loadedor “f ar away” anda copy of the ob-
ject is available at a cheaperor “nearby” server, the use
of location-dependentidentifiersmissesa nice chanceto
benefit from replication(or migration). Only the useof
location-independentidentifiersmakes it possibleto ben-
efit from migrationandreplicationin thebestpossibleway
becauseobjectscanoftenbefoundatcheapserverswithout
visiting theirexpensivehomeservers.Onthenegativeside,
accessingremotedatawith location-independentidentifiers
alwaysrequiresthetraversalof a distributedindex, thereby
possiblyvisiting severalserversat high cost. Therefore,it
is crucialto minimizethecostof suchtraversals—thisis the
mainfocusof thispaper.

Thetwo approachesalsopotentiallydiffer in thecoststo
migrateandreplicateobjects:updatinga distributedindex
vs.updatingcollectionsof forwards.We expectthesecosts
to be of minor importancebecausemigrationsand repli-
cationsarerarelyperformedcomparedto objectreadsand
modifications.

3 The Distributed Index

In this section,we will describeour distributed index for
location-independentidentifiers.Our index is adaptedfrom
theB-link tree[LY81] andits distributedderivatives[JK93,
Lom96] with slightmodificationsto thelayoutof thenodes,
thewaypointersbetweenparentandchild nodesareimple-
mentedandtheinitializationof theindex. We will first de-
scribethe structureof the index andits nodes,thenindex
maintenance(initialization, splitting of nodes,reorganiza-
tions),andfinally how objectscanbefoundin thepresence
of concurrentmigrations.

3.1 Structur eof the Index and Its Nodes

Figure 1 shows an exampleindex. The figure shows six
serversof a hierarchywith threelevels, threeindex nodes,
andseveralobjectswith their (location-independent)iden-
tifiers. Theserversandtheir interconnectsarerepresented
in light gray; the nodesof the index and the objects(de-
notedby ovals)areprintedin black. For easeof presenta-
tion andwithoutlossof generality, wewill assumethrough-
out this paperthat all objectsof the databasearestoredat
leafserversof theserverhierarchy.
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Figure1: ExampleServerHierarchy

From the figure, it becomesimmediatelyapparentthat
rootandintermediatenodesof our index containpointersto
their childrenjust asin any conventionaltree-index. There
aretwo differencesto conventionaltrees. The first differ-
enceis thestructureof the leaf nodesof the index, andthe
seconddifferenceis theway that the pointersin the index
areimplemented.

The leaf nodesof our index have the following struc-
ture. Every leaf nodestoresexactly oneentryto recordthe
so-calleddefaultrouteanda list of so-calledexceptionsfor
migratedandreplicatedobjects.Thedefault entrycontains
the addressof the server that generatedor would generate
all objectswith identifiersthat fall into the rangeof iden-
tifiers coveredby the leaf node;for example,if identifiers
0 to 99 arereserved for objectscreatedat Server L1, then
thedefault entryof a leaf nodefor therange[0,100)or any
subrangehereofwould point to Server L1; this situationis
shown in Figure1 wherethedefault entry(labeledas � ) of
theleafnodestoredby ServerL1 pointsto ServerL1. Stor-
ing default routesis an effective techniqueto reducethe
sizeof the distributedindex: we expectthat many objects
of adistributeddatabasesystemarenevermigratedor repli-
cated.Theseobjectsneednot beregisteredindividually in
thedistributedindex asthey areimplicitly registeredin the
default routesothatspacein the index is only investedfor
theimportantcasesof migratedandreplicatedobjects.

Pointersin the distributed index are implementedas
plain server addressesratherthanstoringserver plus disk
addresses.This is true for thepointersof thedefault route
andtheexceptionsstoredin a leafaswell asfor theparent-
child pointersof theroot andintermediatenodes.In addi-
tion to theglobaldistributedindex, everyservermust,there-
fore,maintaintwo local indexesin orderto mapidentifiers
(for objects)andkey ranges(for index nodes)to disk ad-
dresses,andwehavea two-stepprocess:(1) useourglobal
distributed index to find the right server, and (2) usethe
server’s local indexes which can be ordinary B � -treesto
find the objector nodeat that server. Obviously, this ap-
proachcanresultin additionaldisk I/O to probea server’s



local index, but it alsohasimportantadvantages:(1) it re-
duces� thesizeandheightof theglobalindex asmoreentries
canbestoredpernode,and(2) it increasesthelocal auton-
omy of servers. As we will seein Section5, this approach
hasonemorecrucial advantage:it allows to startprobing
theglobal index at every of its nodesratherthanbeingre-
strictedto startingtraversalsat theroot.

3.2 Initialization, Splitting, Reorganization

At thebeginningwhennoobjectshaveyetbeencreated,our
distributedindex is initialized bottom-up.First, every leaf
server of theserver hierarchystoresexactly oneleaf node.
Therangeof theleafnodeestablishedataserveris identical
with therangeof identifierspre-allocatedfor theobjectsto
becreatedat thatserver, the default routeof the leaf node
is setto point to theserver itself, andthelist of exceptions
is naturallyemptyto begin with. Basedontheseleafnodes,
theintermediatenodesandtherootareconstructed:theroot
isstoredattherootserver, andintermediatenodesarestored
atevery intermediateserver in sucha way thattheinterme-
diatenodesstoredat a server containpointersto all index
nodesstoredat child serversof thatserver. This approach
is very intuitive, andits effectscanbe seenin Figure1 in
which theintermediatenodestoredatServer I1 is responsi-
ble for the leaf nodestoredat Server L1. This initial state
of theindex is notchangedevenif objectsarecreatedat the
servers; migrationandreplicationare the only operations
thattriggerchanges.

Whenan object is migratedor replicated,an exception
containingtheobject’s identifierandits new locationsis es-
tablishedin the leaf noderesponsiblefor theobject. Index
nodesare handledin the sameway as nodesin a B-link
tree. Thus,excessive migrationandreplicationcanresult
in the usualbottom-upsplitting procedure.As in a B-link
tree,no locks on the parentnodeneedto be acquiredbe-
causeall thenodesof thesamelevel arechained(including
the two nodesthat resultfrom a split) so that even clients
that readan out-of-dateparentnode(beforethe split) can
find the correctsibling node(after the split) by following
thepointersof thechain. (Detailsof this approacharede-
scribedin [LY81, JK93, Lom96].) It shouldbenotedthatif
a leaf nodeis split, bothresultingnodesinherit thedefault
routeof theoriginalnode.Accordingly, two leaf nodescan
only becoalescedif they have thesamedefault route.With
theexceptionof this constraintto coalescenodes,all con-
ceivablereorganizationtechniquesarepossiblein our dis-
tributedindex; for example,moving index nodesfrom one
server to another.

3.3 ConcurrencyControl

The big advantageof B-link trees is that they allow to
safely split a nodewithout holding a lock on the parent
node; that is, searchescan be completedby navigating
alongsibling links even if an out-of-dateparentnodewas

read. But, what if an object is migratedand the lookup
is basedon an out-of-dateleaf node? At this level the
chainingmechanismdoesnotwork sothatanothersolution
must be found. To seewhy, considerthe following situ-
ation: a client readsa leaf nodewhich indicatesthat Ob-
ject 5 is storedby ServerL1. Now, Object5 migratesfrom
Server L1 to Server L9, therebydeletingServer L1’s copy
of Object5 andalsoupdatingthedistributedindex. Then,
theclientvisitsServerL1 basedonits inconsistentindex in-
formationanderroneouslyassumesthatObject5 hasbeen
deleted. To handletheseraceconditionswe adopta sim-
ple technique:After Object5 hasmigratedfrom Server L1
to Server L9, Server L1 keepstemporarilya forward for
Object5 to Server L9. Theseforwardsareonly accessed
by lookupsthat werealreadypastthe leaf nodewhenthe
modificationtook place.Therefore,theseforwardscanau-
tomaticallybediscardedaftera shortperiodof time.

4 Cachingand Replication

We now turn to the questionhow the performanceof our
distributedindex canbeimprovedby themeansof caching
andreplicatingindex nodes.Without cachingandreplica-
tion, it is easilypossiblethatseveraldifferentserversneed
to be visited at potentiallyhigh cost in order to probethe
index. Both cachingandreplicationreducethenumberof
visits to remoteservers,andthey areparticularlyeffective
in thisenvironmentbecausethenodesof our index arevery
rarely modified. In this section,we will discusssituations
in whichcachingis especiallyeffective,andwewill present
a simplereplicationstrategy that improvesperformancein
situationsin whichcachingdoesnothelp.At theendof the
section,we will briefly discusshow copiesof index nodes
canbekeptconsistent.

4.1 Caching

To see how caching works, consider that a client of
Server L2 wantsto readObject5 in Figure1. To do so,
it will readtheroot of theindex from ServerR, thenit will
readthe intermediatenodefrom Server I1 andfinally the
leaf nodefrom Server L1. Thekick of cachingis thatafter
theserequestshave beenprocessed,copiesof the threein-
dex nodesareavailableatServerL2 sothatasubsequentre-
questof theclient to, say, Object25canbeprocessedwith-
out visiting ServersR andI1. Thecopiesof the index are
keptat theclientuntil they arefoundto beno longeruseful
for clientsof Server L2 so that they arereplacedby other,
morefrequentlyusedindex nodesin thecacheof ServerL2.

This examplealreadydemonstratesthe two major rea-
sonswhy cachingis particularlyeffective in our environ-
ment: (1) Theroot andintermediatenodesof higherlevels
of theindex areusedveryoften.Thesenodesare,therefore,
likely tobecachedby almosteveryserversothatinteraction
with thetop-level serversof theserverhierarchy, whichare
potentialbottlenecks,arerare. (2) Whena client accesses
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anobjectfromaremoteserver, it is likely thattheclientwill
alsoaccessother, logically relatedobjectsfrom thatserver.
As a result,it is oftenalsobeneficialto cache,at leastfor a
while, leafnodesof theindex.

4.2 Replication

Cachingis not the solution to all performanceproblems.
ConsideragainFigure1. Thefigureshows thatObject41
has beenmigratedto Server L9—probablybecauseit is
frequently usedby Server L9 or clients that are run on
serversin ServerL9’sneighborhood;say, ServersL10,L11,
. . .Now if a client of Server L10 tries to readObject41, it
will haveto visit (distant)ServerL1 athighcostin orderto
find out thatObject41 is storedat (nearby)ServerL9; like-
wise, clientsof ServersL11, L12, . . .would have to visit
ServerL1 athighcostbeforefetchingObject41.

In thiscase,cachingdoesnothelpbecauseit cannottake
advantageof geographical locality; this observation has,
for example,alsobeenmadefor WWW pagesin [GS94].
Thus,weneedto replicatetheindex nodesof migratedand
replicatedobjectsasshown in Figure2. WhenObject41
is migratedfrom ServerL1 to ServerL9, thecorresponding
leafnodeis replicatedatServerL9, theparentof this leaf is
replicatedat theparentserverof ServerL9, andsoon until
acommonancestorof ServersL1 andL9 is reached(in this
caseServer R, the root). This way, requestsof clientsat
ServersL10, L11,.. . to accessObject41 canbe processed
at low costusingServer I2’scopy of theintermediatenode
andServer L9’s copy of the leaf nodeandwithout visiting
thedistantServerL1.

An interestingcaseoccursif a replicatedindex nodeis
split. Consider, for example, that the leaf node [0,100)
of Figure2 needsto be split into two new leaf nodesfor
[0,50) and [50,100). After this split only a replicaof the
[0,50) nodeneedsto be storedat Server L9 becauseonly
thisnodecontainsinformationaboutobjectsthatarestored
at Server L9. Furthermoreit shouldbe noted that there
is anotherimportanttechnicaldifferencebetweencaching
andreplication:As shown in Figure2, replicationactually

changesthestructureof the index; for exampletheroot of
the index wasupdatedasa resultof replicatingthe inter-
mediatenode;theroot would not have beenupdatedif the
intermediatenodehadbeencachedatServerI2. As aresult,
thesizeof the index grows,andit is evenpossiblethat the
heightof theindex increasesdueto nodereplication.

4.3 Consistency

Of course,we have to maintaina level of consistency that
guaranteesthatevery lookupoperationfindsthereferenced
object (if it exists) or determinesits non-existence(if it
neverexistedor if it wasdeleted).Fortunately, becauseour
index is basedonaB-link tree,wecanuseall thetechniques
devisedin theliteraturefor maintainingreplicasof theroot
andintermediatenodesof our index (e.g.,[JK93, Lom96]).

We needa differentapproachfor replicasof leaf nodes.
We proposeto usea mastercopyconceptfor leaf nodes.
That is, all updatesto leaf nodesarefirst performedon the
mastercopieswhich, of course,arefreely distributedover
the network (onecould, for example,declarethe copy of
a leaf at its default server as master). From thesemaster
copiesthe updatesare asynchronouslypropagatedto the
replicas. Now, if a lookupof an objectfails this canhave
two reasons:eithertheobjectdoesnot exist or the lookup
wasnavigatedto thewrongserverdueto anout-of-datein-
dex nodereplica.Therefore,every lookupfailurehasto be
verified by visiting the mastercopy. However, suchfail-
urescanbeexpectedto berarebecausethey canonly hap-
penif thereferencedobjectdoesn’t exist (i.e., a referential
integrity violation in the databaseoccurred)or if a (copy
of an)objectwasmigratedandthis migrationwasnot yet
propagatedto thereplicasof thecorrespondingleafnode.

5 Alter nativeSearch Strategies

In this section,we will completeour discussionof how
location-independentidentifiers can be implementedby
presentingalternativestrategiesto probeourdistributedin-
dex in order to dereferencea location-independentidenti-
fier. We will classifysuchstrategiesalongtwo dimensions:
Policiesof the first dimensionspecifyhow the distributed
index is traversed,and policies of the seconddimension
specifyhow theserverhierarchy is traversed.

5.1 Traversing the Distributed Index:
Full Traversalsand Shortcuts

Thestandardwayto probeanindex is to readtherootof the
index first, follow theappropriatepointerto anintermediate
node,andgofurtherdown from nodeto nodeuntil theright
leaf is found;wewill call thisstrategyFull Traversal. A po-
tentialimprovementto thisstrategy is to startataninterme-
diatenodeor, if available,evendirectly at theright leaf of
theindex; wecall suchanapproachaShortcut. To illustrate
thebenefitsof Shortcuts,let’sgobackagainto Figure1 and



considerarequestof aclientatServerL2 toaccessObject5.
Due� to a Shortcut,theclient cansearchfor Object5 using
immediatelythe intermediatenodestoredat Server I1 and
withoutvisitingServerR for theroot. Shortcutsarepossible
becauseeveryservermaintainsa localB � -treefor nodesof
the distributedindex (seeSection3.1), andthis local B � -
treemakesit possibleto probefor relevantindex nodesfor
anobject.WedefinetheShortcutpolicy asasearchstrategy
thatstartsanindex traversalat thebottom-mostof theserel-
evant index nodes;i.e., the index nodewith the narrowest
key range.(Of course,if no relevantindex nodeis foundat
a server, theservermustaskits parentserver for helpusing
theserver-hierarchyprotocoldescribedin Section2.2.)

The benefitsof Shortcutsare not very pronouncedin
some situationsin which the root and high-level index
nodesarecached.If, for example,theroot is cachedandno
othernodeon thepathto theright leaf nodecanbefound,
theFull TraversalandtheShortcutstrategiesareidentical,
sinceboth strategieswill usethe cachedcopy of the root
asentrypoint for the index traversal.UsingShortcutscan,
however, improve performanceif cachingis not very ef-
fective, say, becausethe index hasmany levelsandnot all
high-level nodesof theindex canbecachedateveryserver.

5.2 Traversing the Server Hierar chy:
Iterati veand RecursiveSearch

For theseconddimensionof possiblesearchstrategies,we
proposetwo approacheswhich we call Iterative and Re-
cursivesearch.Figure3 givesan examplefor an Iterative
search.A client of Server L1 requeststo accessan object
storedat Server L9. After finding out that neitherthe ob-
ject itself nor therootor any otherrelevantindex nodesare
availableat Server L1, theclient asksServer I1, theparent
server, for help.Server I1 repliesthatit hasnousefulinfor-
mationeither. So,theclientasksServerR, thegrandparent
server, for help;ServerR returnstherootof theindex. Then
theclient visits Server I2 andfinally Server L9 in orderto
fetchtheleafnodeandtheobject.

In an Iterative search,a client keepscontrol of the en-
tire search.In aRecursivesearch,ontheotherhand,clients
delegatecontrol to otherservers—thisis illustratedin Fig-
ure4. After finding thatno usefulinformationis available
at Server L1, theclient asksServer I1 for help, just asbe-
fore. Ratherthanreplying,however, Server I1 forwardsthe
client’srequesttoServerR, its ownparent,afterfindingthat
it hasnot got any useful informationeither. Server R has
the root of the index and,therefore,knows that the search
shouldbe continuedat Server I2; it forwardsthe request
to Server I2, andServer I2 forwardstheclient’s requestto
ServerL9. Finally, ServerL9 shipstheobjectto ServerL1.

Comparingthe Iterative and Recursive approachesin
Figures3 and4, it canbeseenthat therecursive approach
requireslessmessages:5 insteadof 10 for theIterative ap-
proach.Evenmoreimportant,themessagesof the Recur-
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sive approacharecheaper:in all, the Recursive approach
requires7 hopsthroughthe network (four on the way to
ServerL9, andthreeonthewayback)whereastheIterative
approachrequires16hops.

ThebasicRecursivetechniquehas,however, onecrucial
disadvantage:it doesnot supportcachingof index nodes.
After the requesthasbeenprocessed,no index nodesare
cachedat Sever L1. In orderto take advantageof caching,
we proposethe useof a cache-enhancedRecursive strat-
egy in oneof thefollowing two ways.(1) While delegating
thesearchfrom server to server, all index nodesthat were
usedarecollected. When the searcharrivesat the target
server (L9 in theexample),not only theobjectis returned
but alsothecollectionof all usedindex nodes.Obviously,
this causesratherlarge messagesto be sentover the net-
work. (2) Alternatively, theindex nodescouldbesentback
asynchronouslyto theserver thatstartedthesearchassoon
asthe nodesarevisited. In the example,Server R would
sendtheroot nodeto Server L1, Server I2 would sendthe
intermediatenodeto L1, andServerL9 wouldsendtheleaf
nodeto L1. The disadvantageof this approachis that it
causesadditionalmessages.

5.3 Summary

Combiningthetwo traversalmethodsfor thedistributedin-
dex and the four traversalmethodsfor the server hierar-
chy (Iterative andthe threechoicesfor Recursive), we get
eightconceivablestrategies.Eachof thesestrategiescanbe
usedwith andwithoutnodereplication,giving usa total of
sixteendifferentways to implementlocation-independent
identifiersin a distributeddatabasesystem.

6 PerformanceExperimentsand Results

In this section,we study the tradeoffs of all the different
ways to implement location-independentidentifiers. As
a baselinefor our comparisons,we alsoshow the perfor-
manceof anapproachthatuseslocation-dependentidenti-
fiersasdescribedin Section2.1.

6.1 Simulation Model and Parameters

For all our experiments,we useda simulator. The simu-
lator allowed us to study different server hierarchiesand
network topologiesandget reproducibleresultsfor wide-
areanetworks. With the simulator, we could generatea
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distributeddatabase,maintainthe distributed index in the
caseof location-independentidentifiersandhandlethefor-
ward referencesin the caseof location-dependentidenti-
fiers. Eachserver in thesimulationhada singledisk (aver-
agelatency 15 msec,8K pagesize)for the local B � -trees
anda main-memorybuffer pool for cachinglocal andre-
moteobjects,nodesof the distributedindex andnodesof
thelocal B � -trees.Whenusinglocation-independentiden-
tifiers, thebuffer poolwassplit in two halvesof equalsize:
onehalf to cachenodesof thedistributedindex andonehalf
to cacheobjectsof thedatabase.

The server hierarchyandthe network topologyusedin
all experimentsreportedhereis shown in Figure5. In fact,
our server hierarchyconsistsof threeseparateserver hier-
archies( � , � , and � in Figure5), eachwith its own root,
eachwith threeintermediateservers,andeachwith nineleaf
servers. The roots of the threehierarchiesareconnected
by a wide-areanetwork with 120 msecslatency. Within a
server hierarchy, intermediateserversandtheroot arecon-
nectedby a metro-areanetwork with 30 msecslatency, and
leafnodesof thesamesubnetandthe“gateway” intermedi-
atenodeof thesubnetareconnectedby alocal-areanetwork
with 10 msecslatency. (All latency timesweredetermined
in separateexperimentswith pingon theInternet.)

6.2 Databaseand Workloads

As mentionedearlier, we only considercasesin which ob-
jectsarestoredat leaf serversof the server hierarchy. In
ourexperiments,everyleafserverstoredexactly10,000ob-
jects,sothewholedatabasehad270,000objects.Everyob-
ject was8K large; this is thepagesizeandalsothesizeof
localB � -treenodesandnodesof ourdistributedindex. We
establishedan initial distributedindex for this databaseas
describedin Section3.2with oneexception:therootof the
index wasstoredonall threerootserversof thethreeserver
hierarchies.Wecarriedoutsomeexperimentsonthis Initial
database.Thenwemigratedobjectsandcarriedoutexperi-
mentson theresultingMigrationdatabase.

TheMigration databasewasgeneratedby migratingall
objectsfrom serversin � to serversin � , migratingall ob-
jects from � to � , and migrating all objectsfrom � to
� . After migration,every leaf server storedagainexactly
10,000objects. As a resultof migration,forwardshadto
be establishedif location-dependentidentifierswereused,
and the distributed index for location-independentidenti-
fiershadto beupdated.Also, index nodeswerereplicated

Initial Migr.

LocDep 21.30 49.24
LocIndep 21.60 49.24
LocIndep+ index noderepl. 21.60 108.94

Table1: SpaceRequiredfor ForwardsandIndex (in MB)
SpaceRequirementsfor LocalB � -treesareIncluded

if nodereplicationwasactivatedasdefinedin Section4.2.
We alsocreateddatabaseswith objectsthat were repli-

catedratherthanmigrated.We do not show the resultsof
experimentswith thosedatabasesheredue to spacecon-
straints;theeffectswere,however, essentiallythe sameas
with theMigrationdatabase.

To get a feeling for the storagespaceconsumedby the
individual approaches,Table1 lists thespacerequirements
of forwards(location-dependentidentifiers)andfor thedis-
tributedindex with andwithout nodereplication(location-
independentidentifiers);all numbersof Table1 includethe
spacerequiredto maintainlocal B � -trees. It becomesap-
parentthatcomparedto forwards,theadditionalspaceused
by anentiredistributedindex is marginal if thenodesof the
distributedindex arenot replicated.Nodereplicationusing
ourschemaof Section4.2inflatedthesizeof theindex by a
factorof 2 if objectsaremigratedor replicated.(In theini-
tial state,nonodesarereplicatedaccordingto ourscheme.)

Theworkloadswe usedareverysimple.Oneclientwas
run on every leaf server, andevery client requestedobjects
with a fixedfrequency of about20 objectsper10 seconds.
The objectsreadby a client werechosenrandomlyusing
a Uniform distribution; we measuredworkloadsin which
a client only requestedobjectsstoredin its neighborhood
(i.e.,storedon oneof theother8 serversin thesameserver
hierarchy)or from distantservers(i.e.,serversof adifferent
server hierarchy).To reducetheeffectsof randomness,we
repeatedall experimentsso that the90%confidenceinter-
vals(computedusingbatchmeans)werewithin � 5%.

6.3 Experiment 1: Initial Database

In the first experiment,we studythe responsetime of re-
queststo readobjectsin theInitial database;i.e.,beforeany
objectsaremigrated. Here, location-dependentidentifiers
alwaysshow thelowestresponsetimebecausethey directly
visit thehomeserverof anobjectandfetchtheobjectfrom
there.Wecanthususelocation-dependentidentifiersin this
experimentas a baselineto measurethe overheadof our
techniquesto implementlocation-independentidentifiers.

Figure6 shows theresponsetime of requeststo readan
objectfromanearbyserver(i.e.,clientsfrom � readobjects
in � ). Location-independentidentifierswith an Iterative
andFull Traversalstrategy (Full-Iter) performonly goodin
thecasewhenthecacheof a server is ableto hold theroot
and all relevant intermediateand leaf nodes. This is the
casewhenthecacheof every server has40 or morepages.
Shortcuts(Shortcut-Iter)show betterperformancethanFull
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Traversalsif thecacheis small becauseShortcutsonly re-
quiretheright leaf nodesratherthanall relevantintermedi-
atenodesto becachedin orderto getgoodperformance.

If location-independentidentifiersareusedwith theba-
sic Recursive strategy, no index nodescanbe cachedand
it is always necessaryto visit an intermediateserver and
in somecasestheroot server. If Shortcutsareused,there-
sponsetimeof basicRecursivesearchingis26%higherthan
thatof LocDep(theShortcut-Recgraphin Figure6), andif
Full Traversalsareused,the performancepenaltyis 46%.
(We donotshow theFull-Recgraphin Figure6 to improve
readability;thegraphwouldbehigherupandparallelto the
Shortcut-Recgraphatabout130msecs.)

Thecache-enhancedRecursive strategiesget thebestof
cachingandof cheapRecursive traversals. In this exper-
iment, thesestrategies, therefore,show almost the same
(best)performanceas LocDepregardlessof whetherFull
Traversalsor Shortcutsareusedandregardlessof thetech-
niqueusedto effect cacheenhancement.(As a represen-
tative,we use“asynchronousmessages”in all experiments
reportedhere.)

Figure7 shows theresponsetime of requeststo readan
objectfrom a distantserver (i.e., clientsin � readobjects
from � and � ). Obviously, thecostto readanobjectfrom
a distantserver is muchhigherthanfrom a nearbyserver.
Comparingthe resultsof Figures6 and7, we canobserve
thefollowingdifferences.(1) TheIterativeapproachesneed
morecachethan in Figure6, sincetherearemoredistant
objectsthanneighborhoodobjectsand,thus,morerelevant
index nodesneedto be cached. (2) All Recursive strate-
giesshow thesameperformanceasLocDepbecauseall re-
queststo remoteserversneedto beroutedover theroot of
theserverhierarchyregardlessof whichstrategy is used.As
aresult,Shortcut-Rec(andFull-Rec)canfind anentrypoint
to theindex (i.e., theroot)atnoadditionalcost.

6.4 Experiment 2: Migration Database

In thesecondsetof experiments,westudytheeffectsof ob-
jectmigration.Wewill examinetwo differentscenarios:(1)
a client readsobjectsthatweremigratedfrom a distantto a
nearbyserver (e.g.,a client from � readsobjectsthatwere

migratedfrom � to � ), and(2) a client readsobjectsthat
weremigratedfrom distantserversto otherdistantservers
(e.g.,aclient from � readsobjectsthatweremigratedfrom
� to � ). Thereis a third conceivablescenario:clientsread
objectsthatweremigratedfrom anearbyto adistantserver.
We will not show theresultsof this scenariofor spacelim-
itations; in this third scenario,all techniquesfor location-
independentidentifiersoutperformLocDep,but they never
do soby morethan25%. Furthermore,we will not discuss
theresultsfor Full TraversalsbecauseShortcutsalwaysper-
form at leastasgood.

Figure8 shows theresultsfor thefirst scenario.We ex-
pect this scenarioto be very importantfor applicationsin
whichobjectsareprocessedby differentclientsatdifferent
pointsin their life-cycle. In thisexperiment,LocDepis out-
performedby any of thestrategiesfor location-independent
identifiersif the cacheof a server hasmorethan40 pages
becauseit mustalwaysvisit the distanthomeserver of an
objectbeforeit canfetchtheobjectfrom theneighborhood.

As in thefirst experiment,theperformanceof location-
independentidentifierswith anIterativestrategydependson
thesizeof thecache.If thecacheis small, Iterative shows
poorperformancefor repeatedlyvisitingdistantservers,but
if the cacheis large, Iterative can often completelyavoid
visiting distantserversresultingin significantlybetterper-
formancethanLocDep.ThebasicRecursive strategy must
alwaysvisit a distantserver in orderto readthe right leaf
node;therefore,its performanceis overall poor in this ex-
periment. The cache-enhancedRecursive strategiesagain
get thebestof cachingandRecursive searching,andthus,
show betterperformancethanbasicRecursiveandIterative
in all cases.Bestperformancein thisscenariocan,however,
only be achievedif our simplenodereplicationstrategy is
in effect: in this case,distantserversnever needto bevis-
itedbecauseall relevantindex nodesareavailablelocally or
on nearbyservers. This is true regardlessof which search
strategy is used,so thatall threesearchstrategieshave al-
mostthesameperformanceif index nodesarereplicated.

Figure9 showstheresultsof theexperimentsin thesec-
ondscenarioin which all clientsreadobjectsthatweremi-
gratedfrom distantserversto otherdistantservers.LocDep
has,again,theoverall highestresponsetime. LocDepfirst
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visits thedistanthomeserver of theobject,andafterwards
LocDepvisits thedistantserver thatactuallystorestheob-
ject. In all, LocDeppaysthepricefor four expensive mes-
sagesacrosstheWAN.

Location-independentidentifierswith an Iterative strat-
egy are,again,sensitive to theamountof buffersavailable
at theservers.Interestingly, node-replicationis detrimental
to theperformanceof theIterative strategiesin this experi-
mentbecause(1) nodereplicationdoesnothelpin thiscase
sincereadinganindex nodeis alwaysexpensive in anIter-
ativesearchif thenodeis notcached,regardlessof whether
the original or a replicaof the nodeis read;and(2) node
replicationsignificantly inflatesthe sizeof the distributed
index (Table1), andtherefore,cachingof index nodesbe-
comeslesseffective.

Usinglocation-independentidentifierswith a Recursive
searchstrategy (basicor cache-enhanced),only threeex-
pensive messagesneedto be sentover the WAN: A client
in � would, for example,first searchtheright leaf nodein
� . Then,theserver in � would forwardtherequestto the
server in � thatstoresthe object. Finally, the server in �
would returntheobjectto theclient in � . With aRecursive
searchstrategy, nodereplicationcansometimesbehelpful
becausewith nodereplicationtheobjectin � couldberead
without visiting any serversin � ; thus,avoiding onehop
throughtheWAN. It mustbenoted,however, that thereis
an indeterminismin the Recursive strategieswhich makes
nodereplicationlesseffectivein thiscase.Wheninspecting
therootnodeof theindex, thesearchcouldbecontinuedus-
ing theoriginal copy of the intermediatenodestoredin �
or usingthereplicain � : therootnodecontainspointersto
both and,at that point, it is not possibleto seewhich one
is thebetterto use. If theoriginal copy is used,no advan-
tageof nodereplicationis taken,andthreehopsthroughthe
WAN arerequiredto accessanobjectthatwasmigratedto
� . If the replicais usedonly two hopsthroughthe WAN
would berequiredto accessanobjectin � ; however, three
hopswould berequiredthis way if the targetof thesearch
is anobjectthathasnotbeenmigrated(i.e., is still storedin
� ). For our experiments,we implementedthis indetermin-
ismby usingtheoriginalcopy andthereplicain 50%of the
searcheseach.

7 RelatedWork

Our work hasbeeninfluencedby variousdevelopmentson
index structuresfor distributeddatabases,wirelesscommu-
nicationsystemsandnameservicesin operatingsystems.

Data structuresand algorithmsfor implementingdis-
tributed hash tables and trees are describedin [JK93,
KW94, LNS94, Lom96]. Issuessuchasconcurrency con-
trol andrecovery arethoroughlycoveredthere,andthere-
sultsaredirectly applicableto our approach.Themainfo-
cusof thesepapersis to balancethe load of a systemby
distributing andreplicatingpartsof the indexeson several
servers. The issueof finding neighboringcopiesof repli-
cateddataandtheideaof finding shortcutsin a distributed
index, however, havenotyetbeendiscussedin thatwork.

In wirelesscommunicationsystems,profilesof mobile
usersneed to be retrieved with as little communication
cost as possible. [AHMW94, JLS� 95] discusslocation-
dependentas well as location-independentschemesfor
maintaining identifiers (phone numbers) for this task.
Pleiades[JLS� 95], for example,usesahierarchyof servers
where the profile information is storedin the leaves and
higherlevel serversstoreroutinginformationfor everypro-
file in all serverslower in thehierarchy. Thus,creatingnew
objectsis muchmoreexpensive thanin our approach,be-
causein Pleiadesall serversupto therootmustbeinformed.
In addition,Pleiadesdoesnotsupportthecachingof index-
ing information.

In operatingsystems,nameservices[Moc87, CCI89,
Ter85] bind hierarchicallyorganizednamesto hosts,mail-
boxes, etc. These namescan be viewed as location-
independentidentifiersby which theobjectsarelocated.In
contrastto our work, the namespaceis usuallyorganiza-
tionally chosen(for example,the “.com” domainin DNS)
andno index structuresareinvolved(for example,in DNS
the databaseis storedin flat text files maintainedby ad-
ministrators).[Ord93] containsa proposalto improvesuch
nameservicesusing“flat” tables.

Thereareseveraldistributeddatabasesystemsthat em-
ploy location-dependentidentifiers.SHORE[CDF� 94] is a
researchprototypeandItascaa commercialsystem[Ita93]
usinga location-dependentnamingscheme.In Itasca,if the



birth siteof anobjectis foundto beunavailable,abroadcast
messageu toall serversis sentwhichis notviablein largedis-
tributedsystems.In theThor project[DLMM93], lazy up-
datingof location-dependentidentifierswasdiscussed.The
basic idea is to lazily changeall referencesin the whole
databasethatarepointingto old locationsof amigratedob-
ject so that they containthe currentlocationof theobject.
Objectscanpotentially leave several forwardsbehindand
it may take multiple stepsto resolve chainsof forwards.
Patankaretal. [PSS96] proposeadirectoryservicefor CIM
databases;their approachis basedonhashing,andit works
bestin aLAN.

8 Conclusion

In this paper, we studied two alternative ways to iden-
tify objectsin a distributed database:location-dependent
and location-independentidentifiers. Clearly, location-
dependentidentifiersshow thebestperformanceif objects
areneitherreplicatednor migrated.However, in many dis-
tributeddatabaseapplicationsthereare(1) hot-spotobjects
which arefrequentlyaccessedby many differentsites,and
(2) there are objectswhoseaccesspatternsshift in dif-
ferent phasesof their life time. The solutionsto these
problemsare (1) object replicationand (2) object migra-
tion. In this paperwe showed that only systemsemploy-
ing location-independentidentifierscan fully profit from
object replicationand migration and that even in the ab-
senceof replicationandmigration, the overheadof using
location-independentidentifiersis very low in mostsitua-
tions. Purely local objects(i.e., objectsthat never move
andareaccessedonly from their “birth site”) incurnoaddi-
tional costin ourapproachbecausespecial(global)actions
areonly takenfor objectsthataremigratedor replicated.As
aresult,werecommendto uselocation-independentidenti-
fiers.

We presenteda numberof different techniquesto im-
plementlocation-independentidentifiersusing a general-
purposedistributed index with slight modificationsto the
structureof thenodes.Theoveralldesignchoiceswere:

Index node replication vs. no node replication: Index
nodereplicationensuresgoodperformancein oneparticu-
lar, very importantcase:copiesof objectsthatwerecreated
by a distantserver areavailable in the neighborhood.Of
course,nodereplicationdoesnotcomefor freebecausead-
ditionalstoragespaceis requiredandreplicatednodesmust
bekeptconsistent.In ourparticularenvironment,however,
thisadditionalcostis moderate.

Full Traversalvs.Shortcuts: UsingShortcutsis a no-loss
game.ShortcutsareneverworsethanFull Traversal,but in
many situationsthey donotprovidesignificantperformance
benefitseither.

Recursive vs. Iterati ve search: The clearwinner in our
experimentswascache-enhancedRecursivesearching.

Themessagesrequiredfor returningindex nodesin the
cache-enhancedRecursivestrategy causecosts(in termsof
bandwidthusage)thatcannotberealisticallymeasuredin a
simulation.Therefore,wearecurrentlyworkingona“real”
implementationof our approachesin orderto carryout ex-
perimentsusingthe InternetandLANs. Basedon this im-
plementation,we are also going to specificallystudy the
costto migrateandreplicateobjects.
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