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Abstract

In this paper we presentand evaluatealternativetechniquesto
effect the use of location-independenidentifiess in distributed
databasesystemsLocation-independendentifiels are important
to take full advantae of migration and replicationas they allow
accessingbjectswithoutvisiting the serves that createdthe ob-
jects. We will showhowa distributedindex structue canbe used
for this purposewewill presenta simple yeteffectivereplication
strategy for thenodesof theindex, andwewill presentalternative
stratggiesto traversethe index in order to derefelenceidentifiers
(i.e., find a copyof an objectgivenits identifier). Furthermoe,

wewill discusshe resultsof performancesxperimentshat show
sometradeofs of theproposedeplicationandtraversal strategies
and compae our techniquesto an appoac that useslocation-
dependenidentifiers like manysystemsoday

1 Intr oduction

Largedistributedsystemsarebeginningto play a dominant
role in theinformationmarket-place Companiesrebuild-

ing so-calledintranetsto provide accesgo their datafrom

officesall aroundtheworld, andthe WWW is attractingan
ever growing numberof usersand providing accesdo an
ever growing amountof data.

To achieve acceptablgerformancen large distributed
informationsystemsit isimportantto replicateandto move
(migrate) datacloseto siteswherethe datais frequently
used. Both migrationandreplicationcan significantlyre-
ducecommunicatiorcostsandhelp load-balance system
by storingfrequentlyaccessedbjectson differentseners.
Replicationcan,in addition,improvethefaulttoleranceof a
systemsincecopiesof replicatedobjectsareavailableeven
if certainsenersaredown or unreachable.

The benefitsof migrationandreplicationcan,however,
only be exploitedif the systemprovidespowerful facilities
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to find all copiesof an objectgiventhe objects identifier.

Principally, a distributed databaseanbe organizedn two

differentwaysin orderto find objects:it canuselocation-
dependenbr location-independenidentifiers. Location-
dependentdentifiers containthe addressof a sener that
storesa copy of the objectand/orthe addressesf all other
senersthathave a copy of the object;identifierscan,thus,
be dereferencedy visiting thatsener. Onebig advantage
of this approachs its simplicity. Onebig disadwantageof

this approachis thatit cannottake advantageof migration
andreplicationin mary situationsfor example,if acopy of

anobjectis locatedin Munich (Germary) andtheidentifier
of the objectpointsto a senerin SanJosé(USA), thena

requestfrom Passau/Germaiy) to readthe objectwill be

directed(at potentiallyhigh cost)to SanJosébeforetheob-

jectcan(cheaply)beretrievedfrom Munich.

The benefitsof migration and replicationcan only be
fully exploitedif location-independeritlentifiersareused.
To dereferencéocation-independendentifiers,the system
typically maintainssomesort of distributed index which
mapsevery identifierto a list of addressesf senersthat
have a copy of the referencedobject. Ideally, the nodes
of the index structureare storedon senersin sucha way
thatobjectscanberetrievedfrom theneighborhoodvithout
visiting distantseners. While this approactis effective to
supportmigrationandreplication,it incursadditionalcost
for probingthe distributedindex wheneer an identifier of
a remoteobijectis dereferenced(Of course,local objects
canbe accesseavithout probingthe distributedindex.) In
this paper we will shav how location-independentlenti-
fiers canbe implementedn a distributed system,and we
will focusespeciallyon techniquego minimizethe costto
probethe distributedindex by meansof caching,replica-
tion andspecializedraversalstratgies.In additionto these
developmentswe will presentthe resultsof performance
experimentsthat evaluatesometradeofs of the proposed
techniquesand comparethesetechniquego an approach
thatusedocation-dependerndlentifiers.

Throughoutthis paper we will concentrateon tech-
niguesto find copiesof objectsasefficiently aspossiblein
the presencef migrationandreplication;we will not dis-
cussstratgiesthat actually decidewhich objectsto repli-
cateandmigrate,or protocolsthat keepall the replicasof



an objectconsistent.We recognizethatthe choicefor one
suichstratgy and protocol dependson the target applica-
tion, andthereforedesignedurtechniqueso beapplicable
by ary kind of system.

Both location-dependerg#ndindependenidentifiersare
usedin existing systems. URLs (uniform resourceloca-
tors)in the WWW areprobablythe mostprominentexam-
plesfor location-dependeritentifiers; amongdistributed
databasesystemssuchas SHORE[CDF+94] mary other
examplescan be found. Location-independeritientifiers
have beenproposedor the domainnameservice[Moc87]
andthe X.500 directory[CCI89—thoughin a very differ-
ent applicationarea. In the researcHiterature, location-
independentdentifierswere usedfor mobile telecommu-
nicationsystemgAHMW94, JLSF95]. We will discusghe
differencego our approachn detailtowardsthe endof this
paperafterhaving fully presente@urtechniques.

The remainderof this paperis organizedas follows.
Section2 shaovs how distributed databasean be orga-
nizedusinglocation-depender@ndindependentdentifiers.
The following threesectionscontainall the detailsof our
approachand describealternatve waysto implementand
optimize the useof location-independeritientifiers: Sec-
tion 3 describeghe distributed index structure,Section4
shawvs how cachingandreplicationof index nodescanbe
exploited, and Section5 presentsalternatve stratgiesto
probeandtraversethe distributedindex. Sectioné summa-
rizestheresultsof performancexperimentbtainedusing
a simulationmodel. Section7 discusseselatedwork and
Section8 concludeghis paper
in

2 Object Identification Distrib uted

Databases

In this sectionwe will give an overview of how identi-
fiers can be managedn a distributed system. As stated
in the introduction, one of the main design choicesis
whetherlocation-dependertr location-independeritien-
tifiers areto be used. While location-dependentlentifiers
arestraightforvardto applyin practice thereis alargede-
sign spaceof alternatve techniquego effect andtunethe
useof location-independemdentifiers.We will presenthat
designspacen thefollowing sectionsandfocusonthefun-
damentaldeashere.

2.1 Location-Dependentldentifiers

In thisapproachevery objectidentifiercontaingheaddress
of thehomeserverof theobject,i.e.,thesenerthatcreated
the object. The homesener storesa copy of the object
and/ora collectionof forwardsfor thatobject;a forwardis
asimpledatastructurghatcontaingheaddres®f (another)
sener that storesthat object. Using location-dependent
identifiers,thus,an objectcanbe accessedyy simply con-
tactingtheobjectshomesener. Thehomesenerwill reply
by eithersendinga copy of the object,if it storesone,or by

returningthe collection of forwards. Migration andrepli-
cationof anobjectinvolvesupdatingthe homesener’s col-
lectionof forwardsfor thatobject;if, for example,anobject
is replicatedthe homesener establishea new forwardfor
the new replica. In orderto generatainiqueobjectidenti-
fiersfor new objects,senersmaintaincountersandrecord
their valuesin the uniquefields of new objectidentifiersor
apply one of the techniquesiescribedn [EGK95], just as
in acentralizedsystem.

2.2 Location-Independentldentifiers

Using location-independeritentifiers, objectscan be ac-
cessedmigrated,andreplicatedndependentlfrom where
they wereborn. Thegoalis to avoid ary permanentdepen-
deng to one specificsener (suchasthe homesener) in
orderto be ableto accesghe objectif thatseneris down
or to reducecostif thatseneris, say heavily loaded.This
goalis achievedby maintainingadistributedtree-structured
index.

The nodesof this index arestoredon a numberof ded-
icatedsenersorganizedin a hierarchy The hierarchyre-
flectsthe topology of the network; typically, the commu-
nication betweena namesener andits child or parentis
cheap(one hop) whereaghe communicatiorwith a name
sener in a differentbranchof the hierarchyis expensve
(several hops). The numberof senersin the hierarchy
andthe heightof the hierarchydependon the size of the
databasethe workload, and the structureof the network.
(SeefAHMW94] for a detaileddiscussion.)

Thenodesof theindex arestoredat senersof thehierar
chy asfollows: therootnodeis storedby theroot sener of
thehierarchyintermediatanodesarestoredby intermediate
senersandleaf nodesare storedby leaf seners. Probing
theindex to find thelocation(s)of an objectcanbe carried
outin a numberof ways (seeSection5) andis influenced
by cachingandreplication(seeSectiord), but thebasicpat-
ternis alwaysthe same. First, the sener checksif it has,
say acopy of theroot of theindex. If not, the sener asks
its parentsenerin thesener hierarchyfor help. If thepar
ent sener is down or cannothelp, the sener will askthe
grandparensener andso on, until (in the worst case)the
sener will askthe root sener which definitely hasa copy
of theroot of theindex. Oncetheroot hasbeenfound,the
pointersstoredin the root nodecanbe followedto the in-
termediatenodesandso forth until a leaf nodeis reached.
Whentheleafnodeis reachedtheinformationaboutthelo-
cationsof the objectcanbe extractedandthecheapestopy
of theobjectcanberetrieved.

2.3 Discussion

In the following, we will briefly comparethe tradeofs of
the two approacheslescribedabore. First of all, both ap-
proachegerformequallywell if a sener createsew ob-
jectsor accesseocally available objectsbecauseneither



approachrequiresnteractionwith otherseners:aswe will
see thedistributedindex is constructedn suchaway thatit
neednotrecordnew objectsaslongasthey arenotmigrated
or replicatedandin ary case)ocal copiesof objectscanbe
readwithoutaskingotherseners.Creatingnew objectsand
accessindocal copiesof objectsat no additionalcostis a
veryimportantproperty—weexpectthatmary applications
will predominantlywork with local objects.

Thedifferencedetweerthetwo approachebecomeap-
parentif a sener intendsto accessemotedata. In this
casetheuseof location-dependerndentifiersinvolvesvis-
iting the homesener of the object. If the homeseneris
down, heavily loadedor “far away” anda copy of the ob-
ject is available at a cheaperor “nearby” sener, the use
of location-dependenitientifiers missesa nice chanceto
benefitfrom replication (or migration). Only the use of
location-independententifiersmakesit possibleto ben-
efit from migrationandreplicationin the bestpossibleway
becausebjectscanoftenbefoundatcheapsenerswithout
visiting their expensve homeseners.Onthenegative side,
accessingemotedatawith location-independendentifiers
alwaysrequireshetraversalof a distributedindex, thereby
possiblyvisiting several senersat high cost. Therefore,it
is crucialto minimizethecostof suchtraversals—thiss the
mainfocusof this paper

Thetwo approachealsopotentiallydiffer in thecoststo
migrateandreplicateobjects: updatinga distributedindex
vs. updatingcollectionsof forwards.We expectthesecosts
to be of minor importancebecausemigrationsand repli-
cationsarerarely performedcomparedo objectreadsand
modifications.

3 The Distrib uted Index

In this section,we will describeour distributed index for
location-independemdentifiers.Ourindex is adaptedrom
theB-link tree[LY81] andits distributedderivatives[JK93,
Lom94q with slightmodificationgo thelayoutof thenodes,
theway pointersbetweerparentandchild nodesareimple-
mentedandtheinitialization of theindex. We will first de-
scribethe structureof the index andits nodes,thenindex
maintenancéinitialization, splitting of nodes,reomganiza-
tions),andfinally how objectscanbefoundin thepresence
of concurrenmigrations.

3.1 Structureof the Index and Its Nodes

Figure 1 shavs an exampleindex. The figure shavs six
senersof a hierarchywith threelevels,threeindex nodes,
andseveral objectswith their (location-independentjien-
tifiers. The senersandtheir interconnectarerepresented
in light gray; the nodesof the index andthe objects(de-
notedby ovals) are printedin black. For easeof presenta-
tion andwithoutlossof generalitywe will assumehrough-
out this paperthatall objectsof the databasere storedat
leaf senersof the sener hierarchy
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Figurel: ExampleSenerHierarchy

From the figure, it becomesmmediatelyapparenthat
rootandintermediatenodesof ourindex containpointersto
their childrenjust asin any corventionaltree-inde. There
aretwo differencego corventionaltrees. The first differ-
enceis the structureof the leaf nodesof theindex, andthe
seconddifferenceis the way thatthe pointersin the index
areimplemented.

The leaf nodesof our index have the following struc-
ture. Every leaf nodestoresexactly oneentryto recordthe
so-calleddefaultrouteandallist of so-calledexceptionsor
migratedandreplicatedobjects.The default entrycontains
the addresf the sener that generatedr would generate
all objectswith identifiersthatfall into the rangeof iden-
tifiers coveredby the leaf node;for example,if identifiers
0 to 99 areresened for objectscreatedat Sener L1, then
thedefault entry of aleaf nodefor therange[0,100)or ary
subrangéhereofwould pointto Sener L1; this situationis
shavn in Figurel wherethe default entry (labeledasd) of
theleafnodestoredby SenerL1 pointsto SenerL1. Stor
ing default routesis an effective techniqueto reducethe
sizeof the distributedindex: we expectthat mary objects
of adistributeddatabaseystemarenever migratedor repli-
cated. Theseobjectsneednot be registeredindividually in
thedistributedindex asthey areimplicitly registeredn the
default routesothatspacen theindex is only investedfor
theimportantcasef migratedandreplicatedobjects.

Pointersin the distributed index are implementedas
plain sener addressesatherthan storing sener plus disk
addressesThis is true for the pointersof the default route
andthe exceptionsstoredin aleafaswell asfor theparent-
child pointersof the root andintermediatenodes.In addi-
tionto theglobaldistributedindex, everysenermust,there-
fore, maintaintwo local indexesin orderto mapidentifiers
(for objects)andkey ranges(for index nodes)to disk ad-
dressesandwe have atwo-stepprocess(1) useour global
distributed index to find the right sener, and (2) usethe
sener’s local indexes which can be ordinary BT -treesto
find the objector nodeat that sener. Obviously, this ap-
proachcanresultin additionaldisk I/O to probea sener’s



local index, but it alsohasimportantadvantagesi1) it re-
duceghesizeandheightof theglobalindex asmoreentries
canbestoredpernode,and(2) it increaseshelocal auton-
omy of seners. As we will seein Section5, this approach
hasonemorecrucial advantage:it allows to startprobing
the globalindex at every of its nodesratherthanbeingre-
strictedto startingtraversalsattheroot.

3.2 Initialization, Splitting, Reorganization

At thebgginningwhennoobjectshaveyetbeencreatedpur
distributedindex is initialized bottom-up. First, every leaf
sener of the sener hierarchystoresexactly oneleaf node.
Therangeof theleafnodeestablishedtasenerisidentical
with therangeof identifierspre-allocatedor the objectsto
be createdat that sener, the default route of the leaf node
is setto pointto the seneritself, andthe list of exceptions
is naturallyemptyto begin with. Basedonthesdeafnodes,
theintermediatenodesandtherootareconstructedtheroot
is storedattherootsener, andintermediatenodesarestored
ateveryintermediatesenerin suchaway thattheinterme-
diate nodesstoredat a sener containpointersto all index
nodesstoredat child senersof thatsener. This approach
is very intuitive, andits effectscanbe seenin Figurelin
whichtheintermediatenodestoredat Senerl1 is responsi-
ble for the leaf nodestoredat Sener L1. Thisinitial state
of theindex is notchangedvenif objectsarecreatechtthe
seners; migrationandreplicationare the only operations
thattriggerchanges.

Whenan objectis migratedor replicated,an exception
containingthe objectsidentifierandits new locationsis es-
tablishedin the leaf noderesponsibldor the object. Index
nodesare handledin the sameway as nodesin a B-link
tree. Thus, excessve migrationand replicationcanresult
in the usualbottom-upsplitting procedure.As in a B-link
tree, no locks on the parentnodeneedto be acquiredbe-
causeall thenodesof thesamdevel arechained(including
the two nodesthatresultfrom a split) so that even clients
that readan out-of-dateparentnode (beforethe split) can
find the correctsibling node (after the split) by following
the pointersof the chain. (Detailsof this approacharede-
scribedin [LY81, JK93 Lom9§.) It shouldbe notedthatif
aleaf nodeis split, bothresultingnodesinherit the default
routeof the original node.Accordingly, two leaf nodescan
only becoalescedf they have thesamedefaultroute. With
the exceptionof this constraintto coalescenodes.all con-
ceivablereomganizationtechniquesare possiblein our dis-
tributedindex; for example,moving index nodesfrom one
senerto another

3.3 ConcurrencyControl

The big advantageof B-link treesis that they allow to
safely split a node without holding a lock on the parent
node; that is, searchesxan be completedby navigating
alongsibling links evenif an out-of-dateparentnodewas

read. But, what if an objectis migratedand the lookup
is basedon an out-of-dateleaf node? At this level the
chainingmechanisndoesnotwork sothatanothersolution
mustbe found. To seewhy, considerthe following situ-
ation: a client readsa leaf nodewhich indicatesthat Ob-
ject5is storedby SenerL1. Now, Object5 migratesfrom
SenerL1 to Sener L9, therebydeletingSener L1's copy
of Object5 andalsoupdatingthe distributedindex. Then,
theclientvisits SenerL1 basednits inconsistenindex in-
formationanderroneouslyassumeshat Object5 hasbeen
deleted. To handletheseraceconditionswe adopta sim-
ple technique:After Object5 hasmigratedfrom Sener L1
to Sener L9, Sener L1 keepstemporarilya forward for
Object5 to Sener L9. Theseforwardsare only accessed
by lookupsthat were alreadypastthe leaf nodewhenthe
modificationtook place. Therefore theseforwardscanau-
tomaticallybe discardedhftera shortperiodof time.

4 Cachingand Replication

We now turn to the questionhow the performanceof our
distributedindex canbeimprovedby the meansof caching
andreplicatingindex nodes.Without cachingandreplica-
tion, it is easilypossiblethatseseral differentsenersneed
to be visited at potentially high costin orderto probethe
index. Both cachingandreplicationreducethe numberof
visits to remoteseners,andthey areparticularly effective
in this environmentbecaus¢henodesof ourindex arevery
rarely modified. In this section,we will discusssituations
in whichcachings especiallyeffective,andwewill present
a simplereplicationstratgy thatimprovesperformancen
situationan which cachingdoesnot help. At theendof the
section,we will briefly discusshow copiesof index nodes
canbekeptconsistent.

4.1 Caching

To see how caching works, considerthat a client of
Sener L2 wantsto readObject5 in Figure1l. To do so,
it will readtherootof theindex from Sener R, thenit will
readthe intermediatenodefrom Sener 11 andfinally the
leafnodefrom Sener L1. Thekick of cachingis thatafter
theserequesthiave beenprocessedgopiesof the threein-
dex nodesareavailableat SenerL2 sothatasubsequerre-
guestof theclientto, say Object25 canbe processeavith-
outvisiting SenersR andl1. The copiesof theindex are
keptatthe clientuntil they arefoundto benolongeruseful
for clientsof Sener L2 sothatthey arereplacedby other,
morefrequentlyusedindex nodesn thecacheof SenerL2.
This examplealreadydemonstratethe two major rea-
sonswhy cachingis particularly effective in our environ-
ment: (1) Theroot andintermediatenodesof higherlevels
of theindex areusedvery often. Thesenodesare therefore,
likely to becachedy almostevery senersothatinteraction
with thetop-level senersof the sener hierarchywhich are
potentialbottlenecksarerare. (2) Whena client accesses
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anobjectfrom aremotesener, it is likely thattheclientwill

alsoacces®ther logically relatedobjectsfrom thatsener.
As aresult,it is oftenalsobeneficialto cache atleastfor a
while, leaf nodesof theindex.

4.2 Replication

Cachingis not the solutionto all performanceproblems.
ConsideragainFigure 1. Thefigure shows that Object41
hasbeenmigratedto Sener L9—probably becauset is

frequently usedby Sener L9 or clients that are run on

senersin SenerlL9’sneighborhoodsay SenersL10,L11,

...Now if aclientof SenerL10 triesto readObject41, it

will haveto visit (distant)SenerL1 athigh costin orderto

find outthatObject41is storedat (nearby)SenerL9; like-
wise, clientsof SenersL11, L12, ...would have to visit

SenerL1 athigh costbeforefetchingObject41.

In this casecachingdoesnothelpbecausé cannotake
adwantageof geographical locality; this obsenation has,
for example,alsobeenmadefor WWW pagesin [GS94.
Thus,we needto replicatetheindex nodesof migratedand
replicatedobjectsas shavn in Figure2. WhenObject41
is migratedfrom SenerL1 to SenerL9, thecorresponding
leafnodeis replicatedat Sener L9, theparentof thisleafis
replicatedat the parentsener of SenerL9, andsoon until
acommonancestopf SenersL1 andL9 is reachedin this
caseSener R, theroot). This way, requestf clients at
SenersL10, L11,...to accesbject41 canbe processed
atlow costusingSener12’'s copy of theintermediatenode
andSener L9's copy of the leaf nodeandwithout visiting
thedistantSenerL1.

An interestingcaseoccursif areplicatedindex nodeis
split. Considey for example, that the leaf node [0,100)
of Figure 2 needsto be split into two new leaf nodesfor
[0,50) and[50,100). After this split only a replicaof the
[0,50) nodeneedsto be storedat Sener L9 becausennly
this nodecontainanformationaboutobjectsthatarestored
at Sener L9. Furthermoreit should be notedthat there
is anotherimportanttechnicaldifferencebetweencaching
andreplication: As shovn in Figure2, replicationactually

changeghe structureof the index; for examplethe root of
the index was updatedas a resultof replicatingthe inter-
mediatenode;the root would not have beenupdatedf the
intermediatenodehadbeencachedtSenerl2. Asaresult,
the sizeof theindex grows, andit is evenpossiblethatthe
heightof theindex increaseslueto nodereplication.

4.3 Consistency

Of course we have to maintaina level of consisteng that
guaranteethateverylookupoperatiorfindsthereferenced
object (if it exists) or determinedts non-&istence(if it
never existedor if it wasdeleted).Fortunatelybecauseur
index is basednaB-link tree,we canuseall thetechniques
devisedin theliteraturefor maintainingreplicasof theroot
andintermediatesnodesof ourindex (e.g.,[JK93, Lom9€]).
We needa differentapproacHor replicasof leaf nodes.
We proposeto usea mastercopy conceptfor leaf nodes.
Thatis, all updatedo leaf nodesarefirst performedon the
mastercopieswhich, of course arefreely distributed over
the network (one could, for example,declarethe copy of
a leaf at its default sener as master). From thesemaster
copiesthe updatesare asynchronoushpropagatedo the
replicas. Now, if alookup of an objectfails this canhave
two reasonseitherthe objectdoesnot exist or the lookup
wasnhavigatedto thewrong sener dueto anout-of-datein-
dex nodereplica. Therefore gvery lookupfailure hasto be
verified by visiting the mastercopy. However, suchfail-
urescanbe expectedto berarebecauséhey canonly hap-
penif thereferencedbjectdoesnt exist (i.e., areferential
integrity violation in the databaseoccurred)or if a (copy
of an) objectwasmigratedandthis migrationwas not yet
propagatedo thereplicasof thecorrespondingeafnode.

5 Alter native Search Strategies

In this section,we will completeour discussionof how

location-independentdentifiers can be implementedby

presentingalternatve strategjiesto probeour distributedin-

dex in orderto dereference location-independeritienti-

fier. We will classifysuchstratgjiesalongtwo dimensions:
Policiesof the first dimensionspecify how the distributed
index is traversed,and policies of the seconddimension
specifyhow theserverhierarchyis traversed.

5.1 Traversingthe Distrib uted Index:
Full Traversalsand Shortcuts

Thestandardvayto probeanindex is to readtherootof the
index first, follow theappropriateointerto anintermediate
node,andgo furtherdown from nodeto nodeuntil theright
leafis found;wewill callthisstratgy Full Traversal. A po-
tentialimprovementto this strat@y is to startataninterme-
diatenodeor, if available,evendirectly at theright leaf of
theindex; we call suchanapproacta Shortcut Toillustrate
thebenefitof Shortcutslet’s gobackagainto Figurel and



considelarequesbf aclientatSenerL2 to acces©bjects.
Dueto a Shortcut,the client cansearchfor Object5 using
immediatelythe intermediatenodestoredat Sener |1 and
withoutvisiting SenerR for theroot. Shortcutsarepossible
becausevery sener maintainsalocal Bt -treefor nodesof
the distributedindex (seeSection3.1), andthis local B+-
treemakesit possibleto probefor relevantindex nodesfor
anobject.We definetheShortcutpolicy asasearclstratgy
thatstartsanindex traversalatthebottom-mosbf theserel-
evantindex nodes;i.e., the index nodewith the narravest
key range.(Of coursejf norelevantindex nodeis foundat
asener, thesener mustaskits parentsenerfor helpusing
thesener-hierarchyprotocoldescribedn Section2.2.)
The benefitsof Shortcutsare not very pronouncedn
some situationsin which the root and high-level index
nodesarecachedlf, for example therootis cachedandno
othernodeon the pathto theright leaf nodecanbe found,
the Full Traversalandthe Shortcutstratgiesareidentical,
sinceboth strat@ieswill usethe cachedcopy of the root
asentry point for the index traversal. Using Shortcutscan,
however, improve performanceaf cachingis not very ef-
fective, say becauseahe index hasmary levels andnot all
high-level nodesof theindex canbecachedatevery sener.

5.2 Traversingthe Sewer Hierar chy:
Iterati ve and Recursive Search

For the seconddimensionof possiblesearchstratgjies,we
proposetwo approachesvhich we call Iterative and Re-
cursivesearch.Figure 3 givesan examplefor an Iterative
search.A clientof Sener L1 requestso accessan object
storedat Sener L9. After finding out that neitherthe ob-
jectitself northerootor ary otherrelevantindex nodesare
availableat Sener L1, theclientasksSener 11, the parent
sener, for help. Sener1 repliesthatit hasno usefulinfor-
mationeither So,theclientasksSener R, thegrandparent
sener, for help;SenerR returngherootof theindex. Then
the client visits Sener 12 andfinally SenerL9 in orderto
fetchtheleaf nodeandtheobject.

In an Iterative search a client keepscontrol of the en-
tire searchln aRecursive searchpntheotherhand clients
delegatecontrolto otherseners—thisis illustratedin Fig-
ure4. After finding thatno usefulinformationis available
at Sener L1, theclientasksSener I1 for help, just asbe-
fore. Ratherthanreplying,however, Sener |1 forwardsthe
client'srequesto SenerR, its own parentafterfindingthat
it hasnot got ary usefulinformationeither Sener R has
the root of the index and, therefore knows thatthe search
shouldbe continuedat Sener 12; it forwardsthe request
to Sener 12, andSener 12 forwardsthe client’s requesto
SenerL9. Finally, SenerL9 shipsthe objectto SenerL1.

Comparingthe Iterative and Recursve approachesn
Figures3 and4, it canbe seenthatthe recursve approach
requiredessmessagess insteadof 10 for the Iterative ap-
proach. Even moreimportant,the messagesf the Recur

Figure3: Iterative Search  Figure4: Recursie Search

sive approachare cheaper:in all, the Recursve approach
requires7 hopsthroughthe network (four on the way to
SenerlL9, andthreeontheway back)whereagheIterative
approachrequiresl 6 hops.
ThebasicRecursietechniquehas,however, onecrucial
disadantage:it doesnot supportcachingof index nodes.
After the requesthasbeenprocessedno index nodesare
cachedat Sever L1. In orderto take advantageof caching,
we proposethe useof a cache-enhancedRecursie strat-
egy in oneof thefollowing two ways. (1) While delegating
the searchfrom senerto sener, all index nodesthatwere
usedare collected. Whenthe searcharrives at the target
sener (L9 in the example),not only the objectis returned
but alsothe collectionof all usedindex nodes.Oblviously,
this causegatherlarge message$o be sentover the net-
work. (2) Alternatively, theindex nodescouldbe sentback
asynchronouslyo the senerthatstartedthe searchassoon
asthe nodesarevisited. In the example,Sener R would
sendtheroot nodeto Sener L1, Sener |2 would sendthe
intermediatenodeto L1, andSener L9 would sendtheleaf
nodeto L1. The disadwantageof this approachis that it
causesdditionalmessages.

5.3 Summary

Combiningthetwo traversalmethoddor thedistributedin-
dex and the four traversalmethodsfor the sener hierar
chy (Iterative andthe threechoicesfor Recursie), we get
eightconcevablestratgjies. Eachof thesestratgiescanbe
usedwith andwithout nodereplication,giving us a total of
sixteendifferentways to implementlocation-independent
identifiersin adistributeddatabassystem.

6 PerformanceExperimentsand Results

In this section,we study the tradeofs of all the different
ways to implementlocation-independenitdentifiers. As
a baselinefor our comparisonswe alsoshav the perfor
manceof an approachhat useslocation-dependerntienti-
fiersasdescribedn Section2.1.

6.1 Simulation Model and Parameters

For all our experimentswe useda simulator The simu-
lator allowed us to study differentsener hierarchiesand
network topologiesand get reproducibleresultsfor wide-
areanetworks. With the simulator we could generatea
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distributed databasernaintainthe distributedindex in the
caseof location-independendlentifiersandhandlethe for-

ward referencesn the caseof location-dependeritienti-

fiers. Eachsenerin the simulationhada singledisk (aver-

agelateny 15 msec,8K pagesize)for the local BT -trees
and a main-memorybuffer pool for cachinglocal andre-

mote objects,nodesof the distributed index and nodesof

thelocal B+ -trees.Whenusinglocation-independenden-
tifiers, the buffer poolwassplit in two halvesof equalsize:
onehalfto cachenodewf thedistributedindex andonehalf

to cacheobjectsof thedatabase.

The sener hierarchyandthe network topology usedin
all experimentgeportedchereis shavn in Figure5. In fact,
our sener hierarchyconsistsof threeseparatesener hier-
archies(4, B, andC in Figure5), eachwith its own root,
eachwith threeintermediateseners,andeachwith nineleaf
seners. The rootsof the threehierarchiesare connected
by a wide-areanetwork with 120 msecdateng. Within a
sener hierarchyintermediatesenersandtheroot arecon-
nectedby a metro-areanetwork with 30 msecdateng, and
leaf nodesof thesamesubnetandthe“gateway” intermedi-
atenodeof thesubnetareconnectedy alocal-areanetwork
with 10 msecdateng. (All lateny timesweredetermined
in separat@xperimentswith ping onthelnternet.)

6.2 Databaseand Workloads

As mentionedearlier we only considercasesn which ob-
jectsare storedat leaf senersof the sener hierarchy In
ourexperimentsgveryleafsenerstoredexactly 10,0000b-
jects,sothewholedatabaséad270,0000bjects.Every ob-
jectwas8K large;this is the pagesizeandalsothe size of
local B+-treenodesandnodesof our distributedindex. We
establishedninitial distributedindex for this databases
describedn Section3.2with oneexception:theroot of the
index wasstoredon all threeroot senersof thethreesener
hierarchiesWe carriedout someexperimentonthis Initial

databaseThenwe migratedobjectsandcarriedout experi-
mentson theresultingMigration database.

The Migration databasevasgeneratedy migratingall
objectsfrom senersin A to senersin B, migratingall ob-
jectsfrom B to C, and migrating all objectsfrom C to
A. After migration,every leaf sener storedagainexactly
10,0000bjects. As a resultof migration, forwardshadto
be establishedf location-dependeritientifierswere used,
and the distributed index for location-independeridenti-
fiershadto be updated.Also, index nodeswerereplicated

| | Initial | Migr. |
LocDep 21.30| 49.24
LocIindep 21.60| 49.24
Locindep+ index noderepl. | 21.60 | 108.94

Tablel: SpaceRequiredor Forwardsandindex (in MB)
SpaceRequirementor Local B* -treesarelncluded

if nodereplicationwasactivatedasdefinedin Sectiord.2.

We alsocreateddatabasewiith objectsthatwererepli-
catedratherthanmigrated. We do not shaw the resultsof
experimentswith thosedatabasesere due to spacecon-
straints;the effectswere, however, essentiallythe sameas
with the Migrationdatabase.

To geta feeling for the storagespaceconsumedy the
individual approacheslable lists the spacerequirements
of forwards(location-dependendlentifiers)andfor thedis-
tributedindex with andwithout nodereplication(location-
independenidentifiers);all numbersof Tablel includethe
spacerequiredto maintainlocal Bt -trees. It becomesap-
parenthatcomparedo forwards theadditionalspaceused
by anentiredistributedindex is mamginalif thenodesof the
distributedindex arenot replicated.Nodereplicationusing
our schemaf Sectiond.2inflatedthesizeof theindex by a
factorof 2 if objectsaremigratedor replicated.(In theini-
tial state,nonodesarereplicatedaccordingo our scheme.)

Theworkloadswe usedarevery simple. Oneclientwas
run on every leaf sener, andevery client requesteabjects
with afixedfrequeng of about20 objectsper 10 seconds.
The objectsreadby a client were chosenrandomlyusing
a Uniform distribution; we measuredvorkloadsin which
a client only requestedbjectsstoredin its neighborhood
(i.e.,storedon oneof the other8 senersin the samesener
hierarchy)or from distantseners(i.e., senersof adifferent
sener hierarchy).To reducethe effectsof randomnessye
repeatedall experimentsso thatthe 90% confidenceanter-
vals(computedusingbatchmeans)erewithin +5%.

6.3 Experiment 1: Initial Database

In the first experiment,we study the responsdime of re-
guestgo readobjectsin thelnitial databasd;e.,beforeary
objectsare migrated. Here, location-dependeritientifiers
alwaysshow thelowestresponséime becausehey directly
visit thehomesener of anobjectandfetchthe objectfrom
there.We canthususelocation-dependemtentifiersin this
experimentas a baselineto measurethe overheadof our
techniquego implementlocation-independerndentifiers.
Figure6 shawvs the responseime of requestgo readan
objectfrom anearbysener(i.e.,clientsfrom A readobjects
in A). Location-independernitientifierswith an Iterative
andFull Traversalstratey (Full-lter) performonly goodin
the casewhenthe cacheof a seneris ableto hold theroot
and all relevant intermediateand leaf nodes. This is the
casewhenthe cacheof every sener has40 or morepages.
ShortcutgShortcut-ltershav betterperformancehankull
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Traversalsif the cacheis small becauseShortcutsonly re-
quiretheright leaf nodesratherthanall relevantintermedi-
atenodeso becachedn orderto getgoodperformance.

If location-independeritlentifiersareusedwith the ba-
sic Recursie stratgy, no index nodescan be cachedand
it is always necessaryo visit an intermediatesener and
in somecasegherootsener. If Shortcutsaareused there-
sponséimeof basicRecursie searchings 26%higherthan
thatof LocDep(the Shortcut-Regraphin Figure6), andif
Full Traversalsare used,the performancepenaltyis 46%.
(We do not shaw the Full-Recgraphin Figure6 to improve
readability;thegraphwould behigherup andparallelto the
Shortcut-Regraphataboutl30msecs.)

The cache-enhancdgecursie stratgjiesgetthe bestof
cachingand of cheapRecursie traversals. In this exper
iment, thesestratagyies, therefore,shov almostthe same
(best) performanceas LocDep regardlessof whetherFull
Traversalsor Shortcutsareusedandregardlesf thetech-
nigue usedto effect cacheenhancement(As a represen-
tative, we use“asynchronousnessagesih all experiments
reportedhere.)

Figure7 shows the responsgime of requestgo readan
objectfrom a distantsener (i.e., clientsin A readobjects
from B and(C). Obviously, the costto readanobjectfrom
a distantsener is muchhigherthanfrom a nearbysener.
Comparingthe resultsof Figures6 and7, we canobsene
thefollowing differences(1) Thelterative approachereed
more cachethanin Figure 6, sincethereare more distant
objectsthanneighborhoodbjectsand,thus,morerelevant
index nodesneedto be cached. (2) All Recursie strate-
giesshaw the sameperformanceasLocDepbecausall re-
guestgo remotesenersneedto be routedover the root of
thesenerhierarchyregardles®f which strateyy is used.As
aresult,Shortcut-Reg¢andFull-Rec)canfind anentrypoint
totheindex (i.e.,theroot) at no additionalcost.

6.4 Experiment 2: Migration Database

In thesecondsetof experimentsyve studytheeffectsof ob-
jectmigration.We will examinetwo differentscenarios(1)
aclientreadsobjectsthatweremigratedfrom a distantto a
nearbysener (e.g.,aclientfrom A readsobjectsthatwere

Figure7: Resp.Time, Vary Cache
Initial DB: Accesdo DistantSeners

migratedfrom C to A), and(2) a client readsobjectsthat
weremigratedfrom distantsenersto otherdistantseners
(e.g.,aclientfrom A readsobjectsthatweremigratedfrom
B to C). Thereis athird concevablescenarioclientsread
objectsthatweremigratedirom anearbyto adistantsener.
We will notshawv the resultsof this scenaridor spacdim-
itations; in this third scenarioall techniquedor location-
independenidentifiersoutperformLocDep,but they never
do soby morethan25%. Furthermorewe will notdiscuss
theresultsfor Full Traversaldecaus&hortcutalwaysper
form atleastasgood.

Figure8 shaws the resultsfor the first scenario.We ex-
pectthis scenarioto be very importantfor applicationsin
which objectsareprocessedby differentclientsat different
pointsin theirlife-cycle. In thisexperimentLocDepis out-
performedby ary of the stratgjiesfor location-independent
identifiersif the cacheof a sener hasmorethan40 pages
becausédt mustalwaysvisit the distanthomesener of an
objectbeforeit canfetchthe objectfrom the neighborhood.

As in thefirst experiment,the performanceof location-
independententifierswith anlterative stratey dependsn
the sizeof the cache.If the cacheis small, Iterative shawvs
poorperformancéor repeatedlyisiting distantseners,but
if the cacheis large, Iterative can often completelyavoid
visiting distantsenersresultingin significantlybetterper
formancethanLocDep. The basicRecursie stratgy must
alwaysvisit a distantsener in orderto readtheright leaf
node;therefore its performances overall poorin this ex-
periment. The cache-enhancelecursie stratgiesagain
getthe bestof cachingand Recursie searchingandthus,
shav betterperformancehanbasicRecursie andlterative
in all casesBestperformancén thisscenariacan,however,
only be achiesedif our simplenodereplicationstratay is
in effect: in this case distantsenersnever needto be vis-
ited becausall relevantindex nodesareavailablelocally or
on nearbyseners. This is true regardlessof which search
strategy is used,so thatall threesearchstratgieshave al-
mostthe sameperformancef index nodesarereplicated.

Figure9 shavs theresultsof the experimentsn thesec-
ondscenarian which all clientsreadobjectsthatweremi-
gratedfrom distantsenersto otherdistantseners.LocDep
has,again,the overall highestresponsdime. LocDepfirst
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visits the distanthomesener of the object,andafterwards
LocDepvisits the distantsener thatactuallystoresthe ob-
ject. In all, LocDeppaysthe pricefor four expensve mes-
sagesacrosghe WAN.

Location-independernitientifierswith an Iterative strat-
egy are,again,sensitve to the amountof buffers available
attheseners.Interestingly node-replications detrimental
to the performancef the Iterative stratgiesin this experi-
mentbecaus€l) nodereplicationdoesnot helpin thiscase
sincereadinganindex nodeis alwaysexpensvein anlter-
ative searchf thenodeis notcachedregardlesof whether
the original or a replicaof the nodeis read;and(2) node
replicationsignificantly inflatesthe size of the distributed
index (Table 1), andtherefore cachingof index nodesbe-
comedesseffective.

Usinglocation-independentlentifierswith a Recursie
searchstratgly (basicor cache-enhancedpnly three ex-
pensve messagegaeedto be sentover the WAN: A client
in A would, for example first searchtheright leaf nodein
B. Then,thesenerin B would forwardtherequesto the
senerin C thatstoresthe object. Finally, the senerin C
wouldreturntheobjectto theclientin A. With aRecursie
searchstratgy, nodereplicationcansometimese helpful
becausavith nodereplicationtheobjectin C couldberead
without visiting ary senersin B; thus, avoiding one hop
throughthe WAN. It mustbe noted,however, thatthereis
anindeterminismin the Recursie stratgyieswhich makes
nodereplicationlesseffectivein this case Wheninspecting
therootnodeof theindex, thesearckcouldbecontinuedus-
ing the original copy of the intermediatenodestoredin B
or usingthereplicain C: therootnodecontaingpointersto
both and, at that point, it is not possibleto seewhich one
is the betterto use. If the original copy is used,no advan-
tageof nodereplicationis taken,andthreehopsthroughthe
WAN arerequiredto accessanobjectthatwasmigratedto
C. If thereplicais usedonly two hopsthroughthe WAN
would berequiredto accesan objectin C; however, three
hopswould berequiredthis way if the targetof the search
is anobjectthathasnotbeenmigrated(i.e., is still storedin
B). For our experimentswe implementeahis indetermin-
ism by usingtheoriginal copy andthereplicain 50%of the
searchegach.
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Migration DB: Distantto Distant

7 RelatedWork

Our work hasbeeninfluencedby variousdevelopmentson
index structuredor distributeddatabasesyirelesscommu-
nicationsystemsandnameservicesn operatingsystems.

Data structuresand algorithmsfor implementingdis-
tributed hash tables and trees are describedin [JK93,
KW94, LNS94, Lom9€. Issuessuchasconcurreng con-
trol andrecovery arethoroughlycoveredthere,andthe re-
sultsaredirectly applicableto our approach.The mainfo-
cus of thesepapersis to balancethe load of a systemby
distributing andreplicatingpartsof theindexeson several
seners. Theissueof finding neighboringcopiesof repli-
cateddataandtheideaof finding shortcutsn a distributed
index, however, have notyetbeendiscussedn thatwork.

In wirelesscommunicatiorsystems profiles of mobile
usersneedto be retrieved with as little communication
cost as possible. [AHMW94, JLSt95] discusslocation-
dependentas well as location-independenschemesfor
maintaining identifiers (phone numbers) for this task.
PleiadegJLST95], for example usesahierarchyof seners
wherethe profile informationis storedin the leaves and
higherlevel senersstoreroutinginformationfor every pro-
file in all senerslowerin thehierarchy Thus,creatingnewv
objectsis much moreexpensve thanin our approachpe-
causen Pleiadesll senersuptotherootmustbeinformed.
In addition,Pleiadesioesnot supportthe cachingof index-
ing information.

In operatingsystems,name services[Moc87, CCI89
Ter89 bind hierarchicallyorganizedhameso hosts,mail-
boxes, etc. Thesenamescan be viewed as location-
independenidentifiersby which the objectsarelocated.In
contrastto our work, the namespaceis usually organiza-
tionally chosen(for example,the “.com” domainin DNS)
andno index structuresareinvolved (for example,in DNS
the databasas storedin flat text files maintainedby ad-
ministrators).[Ord93 containsa proposato improve such
nameserviceausing“flat” tables.

Thereare several distributed databasesystemgshat em-
ploy location-dependerndentifiers. SHORE[CDF+94] isa
researctprototypeand Itascaa commercialsystem[1ta93]
usingalocation-dependemamingschemeln Itascajf the



birth siteof anobjectis foundto beunavailable,abroadcast
messago all senersis sentwhichis notviablein largedis-
tributedsystems.n the Thor project|DLMM93], lazy up-
datingof location-dependendentifierswasdiscussedThe
basicideais to lazily changeall referencesn the whole
databas¢hatarepointingto old locationsof a migratedob-
ject sothatthey containthe currentlocationof the object.
Objectscan potentially leave several forwardsbehindand
it may take multiple stepsto resole chainsof forwards.
Patankaretal. [PSS96 proposeadirectoryservicefor CIM
databasegheir approachs basedn hashingandit works
bestin aLAN.

8 Conclusion

In this paper we studiedtwo alternatve ways to iden-
tify objectsin a distributed database:location-dependent
and location-independenidentifiers. Clearly, location-
dependenidentifiersshav the bestperformancef objects
areneitherreplicatednor migrated.However, in mary dis-
tributeddatabasepplicationghereare(1) hot-spotobjects
which arefrequentlyaccessetty mary differentsites,and
(2) there are objectswhose accesspatternsshift in dif-
ferent phasesof their life time. The solutionsto these
problemsare (1) objectreplicationand (2) object migra-
tion. In this paperwe shaved that only systemsemploy-
ing location-independententifiers can fully profit from
objectreplicationand migration and that even in the ab-
senceof replicationand migration, the overheadof using
location-independerntlentifiersis very low in mostsitua-
tions. Purelylocal objects(i.e., objectsthat never move
andareaccessednly from their “birth site”) incur no addi-
tional costin our approactbecausepecial(global)actions
areonly takenfor objectsthataremigratedor replicated As
aresult,we recommendo uselocation-independendenti-
fiers.

We presenteda numberof differenttechniquego im-
plementlocation-independententifiers using a general-
purposedistributedindex with slight modificationsto the
structureof thenodes.Theoverall designchoiceswere:

Index node replication vs. no node replication: Index

nodereplicationensuregoodperformancen oneparticu-
lar, veryimportantcase:copiesof objectsthatwerecreated
by a distantsener are availablein the neighborhood.Of

coursenodereplicationdoesnot comefor freebecausad-

ditional storagespacds requiredandreplicatechodesmust
be keptconsistentln our particularervironment,however,

this additionalcostis moderate.

Full Traversalvs. Shortcuts: Using Shortcutds ano-loss
game.Shortcutsarenever worsethanFull Traversal,butin
mary situationghey donotprovidesignificantperformance
benefitseither

Recursive vs. Iterati ve search: The clearwinnerin our
experimentsvascache-enhanceRecursve searching.

The messagegequiredfor returningindex nodesin the
cache-enhanceRecursie stratgy causecosts(in termsof
bandwidthusageYhatcannotberealisticallymeasuredn a
simulation.Thereforewe arecurrentlyworkingona“real”
implementatiorof our approacheg orderto carry out ex-
perimentausingthe Internetand LANs. Basedon this im-
plementationwe are also going to specifically study the
costto migrateandreplicateobjects.
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